Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b^2=ac
b^2+2017bc=ac+2017bc
b(b+2017c)=c(a+2017b)
b/c=(a+2017b)/(b+2017c)
(b/c)^2=((a+2017b)/(b+2017c))^2
b^2/c^2=(a+2017b)^2/(b+2017c)^2
thế b^2=ac ta có
ac/c^2=(a+2017b)^2/(b+2017c)^2
a/c=(a+2017b)^2/(b+2017c)^2
bài 2 bn nên cộng 3 cái lại
mà năm nay bn lên đại học r đúng k ???
\(\Rightarrow3+\frac{y+z-2x}{x}=3+\frac{x+z-2y}{y}=3+\frac{x+y-2z}{z}\)
\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
\(TH1:x+y+z=0\)
\(\Rightarrow x=-\left(y+z\right),y=-\left(x+z\right),z=-\left(x+y\right)\)
\(A=\left(1+\frac{-y-z}{y}\right).\left(1+\frac{-x-z}{z}\right).\left(1+\frac{-x-y}{x}\right)\)
\(A=-\left(\frac{z}{y}\cdot\frac{x}{z}\cdot\frac{y}{x}\right)=-1\)
\(TH2:x+y+z\ne0\)
\(\Rightarrow x=y=z\Rightarrow A=2^3=8\)
sai đề ròi: tớ làm 2 trường hợp luôn vì trường hợp x+y+z khác 0 thì A mới t/m thuộc N
mà đề là x+y+z khác 0 -.-
Từ \(b^2=ac\)\(\Rightarrow\frac{a}{b}=\frac{b}{c}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{2017b}{2017c}=\frac{a+2017b}{b+2017c}\)
\(\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{a+2017b}{b+2017c}\right)^2=\frac{\left(a+2017b\right)^2}{\left(b+2017c\right)^2}\)(1)
Ta có: \(\left(\frac{a}{b}\right)^2=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}=\frac{a}{c}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{a}{c}=\frac{\left(a+2017b\right)^2}{\left(b+2017c\right)^2}=\left(\frac{a}{b}\right)^2\left(đpcm\right)\)
1.
\(10x=|x+\dfrac{1}{10}|+|x+\dfrac{2}{10}|+...+|x+\dfrac{9}{10}| \ge 0\)
\(\Rightarrow x\ge0\)
\(pt\Leftrightarrow x+\frac{1}{10}+x+\frac{2}{10}+...+x+\frac{9}{10}=10x\)
\(\Leftrightarrow x=\frac{1}{10}+\frac{2}{10}+...+\frac{9}{10}=\frac{9}{2}\)
\(\Rightarrow x=\frac{9}{2}\)
4.
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{a}{b+3c}=\frac{b}{c+3a}=\frac{c}{a+3b}=\frac{a+b+c}{4\left(a+b+c\right)}=\frac{1}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}4a=b+3c\left(1\right)\\4b=c+3a\left(2\right)\\4c=a+3b\left(3\right)\end{matrix}\right.\)
Từ \(\left(1\right);\left(2\right)\Rightarrow4a=b+3\left(4b-3a\right)\)
\(\Rightarrow12a=12b\Rightarrow a=b\left(4\right)\)
Từ \(\left(1\right);\left(3\right)\Rightarrow4c=a+3\left(4a-3c\right)\)
\(\Rightarrow12a=12c\Rightarrow a=c\left(5\right)\)
Từ \(\left(4\right);\left(5\right)\Rightarrow a=b=c\left(đpcm\right)\)
Gọi \(\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}=k\Rightarrow a=2014k;b=2015k;c=2016k\left(1\right)\)
Thay (1) vào M ta có :
M=4(2014k-2015k)(2015k-2016k)-(2016k-2014k)2
=>M=4.-k.-k-4k2
=>M=4k2-4k2=0
Vậy M = 0
\(1a,\) Ta có: \(\left(2x-6\right)^2\ge0\forall x\Rightarrow\left(2x-6\right)^2+36\ge36\forall x\)
\(\Rightarrow\frac{2016}{\left(2x-6\right)^2+63}\le\frac{2016}{63}=32\)
\(\Rightarrow\left|y+2015\right|+32\le32\)
\(\Rightarrow\left|y+2015\right|\le0\)
\(\Rightarrow\left|y+2015\right|=0\)
\(\Rightarrow y=-2015\)
\(\Rightarrow2x-6=0\Rightarrow x=3\)
Vậy \(x=3;y=-2015\)
b)
Ta có: \(b^2=ac.\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}.\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{2017b}{2017c}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b}=\frac{b}{c}=\frac{2017b}{2017c}=\frac{a+2017b}{b+2017c}.\)
\(\Rightarrow\frac{a}{b}=\frac{a+2017b}{b+2017c}\)
\(\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{a+2017b}{b+2017c}\right)^2\)
\(\Rightarrow\left(\frac{a}{b}\right)^2=\frac{\left(a+2017b\right)^2}{\left(b+2017c\right)^2}.\)
\(\Rightarrow\frac{a}{b}.\frac{a}{b}=\frac{\left(a+2017b\right)^2}{\left(b+2017c\right)^2}\)
\(\Rightarrow\frac{a}{b}.\frac{b}{c}=\frac{\left(a+2017b\right)^2}{\left(b+2017c\right)^2}.\)
\(\Rightarrow\frac{a}{c}=\frac{\left(a+2017b\right)^2}{\left(b+2017c\right)^2}\left(đpcm\right).\)
Chúc bạn học tốt!