Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,
Ta có: \(x^2\ge0;\left|y-13\right|\ge0\)
\(\Rightarrow x^2+\left|y-13\right|\ge0\)
\(\Rightarrow x^2+\left|y-13\right|+14\ge14\)
\(\Rightarrow\frac{1}{x^2+\left|y-13\right|+14}\le\frac{1}{14}\)
\(\Rightarrow P=\frac{12}{x^2+\left|y-13\right|+14}\le\frac{12}{14}=\frac{6}{7}\)
Dấu "=" xảy ra khi x = 0, y = 13
Vậy Pmin = 6/7 khi x = 0, y = 13
2, \(P=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)
Để P có GTLN thì\(\frac{7}{n-5}\) có GTLN => n - 5 có GTNN và n - 5 > 0 => n = 6
3,
Ta có: \(10\le n\le99\)
\(\Rightarrow20\le2n\le198\)
\(\Rightarrow2n\in\left\{36;64;100;144;196\right\}\)
\(\Rightarrow n\in\left\{18;32;50;72;98\right\}\)
\(\Rightarrow n+4\in\left\{22;36;50;72;98\right\}\)
Ta thấy chỉ có 36 là số chính phương
Vậy n = 32
4,
ÁP dụng TCDTSBN ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (vì a+b+c khác 0)
\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{a+c-b}{b}=1\end{cases}\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\a+c-b=b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}}\)
\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}\cdot\frac{a+c}{c}\cdot\frac{b+c}{b}=\frac{2c}{a}\cdot\frac{2b}{c}\cdot\frac{2a}{b}=\frac{8abc}{abc}=8\)
Vậy B = 8
Từ \(b^2=ac\)\(\Rightarrow\frac{a}{b}=\frac{b}{c}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{2017b}{2017c}=\frac{a+2017b}{b+2017c}\)
\(\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{a+2017b}{b+2017c}\right)^2=\frac{\left(a+2017b\right)^2}{\left(b+2017c\right)^2}\)(1)
Ta có: \(\left(\frac{a}{b}\right)^2=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}=\frac{a}{c}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{a}{c}=\frac{\left(a+2017b\right)^2}{\left(b+2017c\right)^2}=\left(\frac{a}{b}\right)^2\left(đpcm\right)\)
bài 2 bn nên cộng 3 cái lại
mà năm nay bn lên đại học r đúng k ???
Bài 2:
a) \(\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|-6x=0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=6x\)
Ta có: \(\left|x+1\right|\ge0;\left|x+2\right|\ge0;\left|x+4\right|\ge0;\left|x+5\right|\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|\ge0\)
\(\Rightarrow6x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=x+1+x+2+x+4+x+5=6x\)
\(\Rightarrow4x+12=6x\)
\(\Rightarrow2x=12\)
\(\Rightarrow x=6\)
Vậy x = 6
b) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-3}{4}=\frac{2y-6}{6}=\frac{3z-9}{12}=\frac{x-2-2y+6+3z-9}{2-6+12}=\frac{\left(x-2y+3z\right)-\left(2-6+9\right)}{8}\)
\(=\frac{14-5}{8}=\frac{9}{8}\)
+) \(\frac{x-2}{2}=\frac{9}{8}\Rightarrow x-2=\frac{9}{4}\Rightarrow x=\frac{17}{4}\)
+) \(\frac{y-3}{3}=\frac{9}{8}\Rightarrow y-3=\frac{27}{8}\Rightarrow y=\frac{51}{8}\)
+) \(\frac{z-3}{4}=\frac{9}{8}\Rightarrow z-3=\frac{9}{2}\Rightarrow z=\frac{15}{2}\)
Vậy ...
c) \(5^x+5^{x+1}+5^{x+2}=3875\)
\(\Rightarrow5^x+5^x.5+5^x.5^2=3875\)
\(\Rightarrow5^x.\left(1+5+5^2\right)=3875\)
\(\Rightarrow5^x.31=3875\)
\(\Rightarrow5^x=125\)
\(\Rightarrow5^x=5^3\)
\(\Rightarrow x=3\)
Vậy x = 3
Gọi \(\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}=k\Rightarrow a=2014k;b=2015k;c=2016k\left(1\right)\)
Thay (1) vào M ta có :
M=4(2014k-2015k)(2015k-2016k)-(2016k-2014k)2
=>M=4.-k.-k-4k2
=>M=4k2-4k2=0
Vậy M = 0
Bài 1:
Ta có: \(\frac{\left(a+2012b\right)^2}{\left(b+2012c\right)^2}=\frac{a^2+2.2012.ab+2012^2.b^2}{b^2+2.2012.bc+2012^2.c^2}=\frac{a^2+2.2012.ab+2012^2.ac}{ac+2.2012.bc+2012^2.c^2}=\frac{a\left(a+2.2012.b+2012^2.c\right)}{c\left(a+2.2012.b+2012^2.c\right)}=\frac{a}{c}\)
Vậy...
Bài 2:
\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\Rightarrow\frac{a+2b+c}{x}=\frac{2a+b-c}{y}=\frac{4a-4b+c}{z}\)
\(\Rightarrow\frac{a+2b+c}{x}=\frac{2\left(2a+b-c\right)}{2y}=\frac{4a-4b+c}{z}=\frac{a+2b+c+4a+2b-2c+4a-4b+c}{x+2y+z}=\frac{a}{x+2y+z}\)(1)
\(\frac{2\left(a+2b+c\right)}{2x}=\frac{2a+b-c}{y}=\frac{4a-4b+c}{z}=\frac{2a+4b+2c+2a+b-c-4a+4b-c}{2x+y-z}=\frac{b}{2x+y-z}\) (2)
\(\frac{4\left(a+2b+c\right)}{4x}=\frac{4\left(2a+b-c\right)}{4y}=\frac{4a-4b+c}{z}=\frac{4a+8b+c-8a-4b+c+4a-4b+c}{4x-4y+z}=\frac{c}{4x-4y+z}\) (3)
Từ (1),(2),(3) suy ra \(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)
bạn trên nhầm -4b thành +4b ở bài 2 ở phần (1) nha bạn, nhưng mình cũng cảm ơn
\(1a,\) Ta có: \(\left(2x-6\right)^2\ge0\forall x\Rightarrow\left(2x-6\right)^2+36\ge36\forall x\)
\(\Rightarrow\frac{2016}{\left(2x-6\right)^2+63}\le\frac{2016}{63}=32\)
\(\Rightarrow\left|y+2015\right|+32\le32\)
\(\Rightarrow\left|y+2015\right|\le0\)
\(\Rightarrow\left|y+2015\right|=0\)
\(\Rightarrow y=-2015\)
\(\Rightarrow2x-6=0\Rightarrow x=3\)
Vậy \(x=3;y=-2015\)
b)
Ta có: \(b^2=ac.\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}.\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{2017b}{2017c}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b}=\frac{b}{c}=\frac{2017b}{2017c}=\frac{a+2017b}{b+2017c}.\)
\(\Rightarrow\frac{a}{b}=\frac{a+2017b}{b+2017c}\)
\(\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{a+2017b}{b+2017c}\right)^2\)
\(\Rightarrow\left(\frac{a}{b}\right)^2=\frac{\left(a+2017b\right)^2}{\left(b+2017c\right)^2}.\)
\(\Rightarrow\frac{a}{b}.\frac{a}{b}=\frac{\left(a+2017b\right)^2}{\left(b+2017c\right)^2}\)
\(\Rightarrow\frac{a}{b}.\frac{b}{c}=\frac{\left(a+2017b\right)^2}{\left(b+2017c\right)^2}.\)
\(\Rightarrow\frac{a}{c}=\frac{\left(a+2017b\right)^2}{\left(b+2017c\right)^2}\left(đpcm\right).\)
Chúc bạn học tốt!