\(\in\) Z: a \(\ne\) 0: a 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2016

Bài 4

Để phân số A có giá trị trong tập hợp số nguyên thì tử phải chia hết cho mẫu.

-> n+3 chia hết cho n-2

->n-2+5 chia hết cho n-2

mà n-2 chia hết cho n-2

-> 5 chia hết cho n-2

->n-2 thuộc Ư(5)={-1,1,-5,5}

=>n thuộc {-3,3,1,7}

Vậy các số nguyên n thỏa mãn là -3,1,3,7

1 tháng 5 2020

1) \(\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}=\frac{1}{a+1}+\frac{a+1-a}{a\left(a+1\right)}=\frac{1}{a+1}+\frac{1}{a}-\frac{1}{a+1}=\frac{1}{a}\)

Vậy: \(\frac{1}{a}=\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)

\(\frac{1}{5}=\frac{1}{6}+\frac{1}{5.6}=\frac{1}{7}+\frac{1}{7.6}+\frac{1}{5.6}=\frac{1}{7}+\frac{1}{42}+\frac{1}{30}\)

2) \(A=\frac{n+3}{n-2}=1+\frac{5}{n-2}\)

A nhận giá trị nguyên <=> \(\frac{5}{n-2}\) nhận giá trị nguyên 

<=> \(n-2\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

<=> \(n=\left\{-3;1;3;7\right\}\)

1 tháng 5 2020

Mình học dốt nên chỉ làm được bài 2 thôi :)

\(A=\frac{n+3}{n-2}=\frac{n-2+5}{n-2}=1+\frac{5}{n-2}\)

Để A nhận giá trị nguyên => \(\frac{5}{n-2}\)nhận giá trị nguyên

=> \(5⋮n-2\)

=> \(n-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

n-21-15-5
n317-3
30 tháng 4 2018

1.a.ta có:\(\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)

mà \(\frac{2017}{2018}>\frac{2017}{2018+2019};\frac{2018}{2019}>\frac{2018}{2018+2019}\)

\(\Rightarrow M>N\)

b.ta thấy:

\(\frac{n+1}{n+2}>\frac{n+1}{n+3}>\frac{n}{n+3}\Rightarrow\frac{n+1}{n+2}>\frac{n}{n+3}\)

=> A>B

30 tháng 4 2018

Trịnh Thùy Linh ơi mk cảm ơn bạn nhìu nha =)), iu bạn nhìu

Bài 3: 

Để A là số nguyên thì \(n-2+5⋮n-2\)

\(\Leftrightarrow n-2\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{3;1;7;-3\right\}\)

7 tháng 2 2018

a) \(\frac{3}{-4}=\frac{-3}{4}\)

b) \(\frac{-1}{-5}=\frac{1}{5}\)

\(\frac{a}{b}=\frac{a}{b}\)

11 tháng 4 2017

Ta có:

\(\dfrac{1}{a}=\dfrac{1}{a+1}+\dfrac{1}{a\left(a+1\right)}\)

\(=\dfrac{a}{a\left(a+1\right)}+\dfrac{1}{a\left(a+1\right)}\\ =\dfrac{a+1}{a\left(a+1\right)}=\dfrac{1}{a}\)

Vậy \(\dfrac{1}{a}=\dfrac{1}{a+1}+\dfrac{1}{a\left(a+1\right)}\)

Áp dụng:

\(\dfrac{1}{5}=\dfrac{1}{5+1}+\dfrac{1}{5\left(5+1\right)}=\dfrac{1}{6}+\dfrac{1}{30}\)