Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{7}{19}+y=\dfrac{67}{76}\)
\(y=\dfrac{67}{76}-\dfrac{7}{19}=\dfrac{39}{76}\)
Mình sửa lại đề xíu.
a) \(\frac{75}{100}+\frac{18}{21}+\frac{19}{32}+\frac{1}{4}+\frac{3}{21}+\frac{13}{32}=\frac{3}{4}+\frac{1}{4}+\frac{18}{21}+\frac{3}{21}+\frac{19}{32}+\frac{13}{32}=1+1+1=3\)
b) \(4\frac{2}{5}+5\frac{6}{9}+2\frac{3}{4}+\frac{3}{5}+\frac{1}{3}+\frac{1}{4}=4+\frac{2}{5}+\frac{3}{5}+5+\frac{2}{3}+\frac{1}{3}+2+\frac{3}{4}+\frac{1}{4}\)
\(=4+1+5+1+2+1=14.\)
c) \(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{41\cdot43}=\frac{5-3}{3\cdot5}+\frac{7-5}{5\cdot7}+\frac{9-7}{7\cdot9}+...+\frac{43-41}{41\cdot43}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{41}-\frac{1}{43}=\frac{1}{3}-\frac{1}{43}=\frac{43-3}{3\cdot43}=\frac{40}{129}.\)
\(a.\) \(\frac{4}{15}.\frac{7}{9}+\frac{4}{15}.\frac{2}{9}\)
\(=\frac{4}{15}\left(\frac{7}{9}+\frac{2}{9}\right)\)
\(=\frac{4}{15}.\frac{9}{9}\)
\(=\frac{4}{15}.1\)
\(=\frac{4}{15}\)
\(b.\) \(\frac{13}{19}.\frac{23}{11}-\frac{13}{19}.\frac{8}{11}-\frac{13}{19}.\frac{4}{11}\)
\(=\frac{13}{19}\left(\frac{23}{11}-\frac{8}{11}-\frac{4}{11}\right)\)
\(=\frac{13}{19}.\frac{11}{11}\)
\(=\frac{13}{19}.1\)
\(=\frac{13}{19}\)
a)4/15 x(7/9+2/9)=4/15x1=4/15
b)13/19x(23/11-8/11-4/11)13/19x1=13/19
a) $\frac{1}{3} + \frac{1}{3} + \frac{1}{6} = \frac{2}{3} + \frac{1}{6} = \frac{4}{6} + \frac{1}{6} = \frac{5}{6}$
b) $\frac{1}{{12}} + \frac{3}{4} + \frac{2}{{12}} = \left( {\frac{1}{{12}} + \frac{2}{{12}}} \right) + \frac{3}{4} = \frac{1}{4} + \frac{3}{4} = \frac{4}{4} = 1$
c) $\frac{{19}}{{15}} + 0 + \frac{{11}}{{15}} = \frac{{19 + 11}}{{15}} = \frac{{30}}{{15}} = 2$
Ta có:
\(A=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{3999.4000}}\)
\(=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{3999}-\frac{1}{4000}}\)
\(=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\left(1+\frac{1}{3}+...+\frac{1}{3999}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{4000}\right)}\)
\(=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3999}+\frac{1}{4000}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{4000}\right)}\)
\(=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3999}+\frac{1}{4000}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2000}\right)}\)
\(=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}=1\)
Ta lại có:
\(B=\frac{\left(17+1\right)\left(\frac{17}{2}+1\right)...\left(\frac{17}{19}+1\right)}{\left(1+\frac{19}{17}\right)\left(1+\frac{19}{16}\right)...\left(1+19\right)}\)
\(=\frac{\frac{18}{1}.\frac{19}{2}.\frac{20}{3}...\frac{36}{19}}{\frac{36}{17}.\frac{35}{16}.\frac{34}{15}...\frac{20}{1}}\)
\(=\frac{1.2.3...36}{1.2.3...36}=1\)
Từ đây ta suy ra được
\(A-B=1-1=0\)
\(\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+....+\frac{1}{19.21}\right).x=\frac{9}{7}\)
\(\left(\frac{5-3}{3.5}+\frac{7-5}{5.7}+\frac{9-7}{7.9}+...+\frac{21-19}{19.21}\right).x=\frac{9}{7}\)
\(\left[\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\right)\right].x=\frac{9}{7}\)
\(\left[\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{21}\right)\right].x=\frac{9}{7}\)
\(\left[\frac{1}{2}.\frac{2}{7}\right].x=\frac{9}{7}\)
\(\frac{1}{7}.x=\frac{9}{7}\)
\(\Rightarrow x=\frac{9}{7}\div\frac{1}{7}=9\)
\(\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{19.21}\right)x=\frac{9}{7}\)
\(\Leftrightarrow\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\right)x=\frac{9}{7}\)
\(\Leftrightarrow\left(\frac{1}{3}-\frac{1}{21}\right)x=\frac{9}{7}\)
\(\Leftrightarrow\frac{2}{7}x=\frac{9}{7}\)
\(\Leftrightarrow x=\frac{9}{2}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{1000\cdot1001}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1000}-\frac{1}{1001}\)
\(=1-\frac{1}{1001}\)
\(=\frac{1000}{1001}\)
de vay ma ma cung do
1) \(19=\frac{38}{2}=\frac{76}{4}=\frac{95}{5}\)
2) \(1=\frac{3}{3}=\frac{9}{9}=\frac{1000}{1000}\)
~~ Học tốt ~~