Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(8-\frac{3}{5}=\frac{40}{5}-\frac{3}{5}=\frac{37}{5}\)
b)\(\frac{24}{15}\times\frac{56}{72}\times\frac{10}{14}=\frac{13440}{15120}=\frac{8}{9}\)
c)\(\frac{32}{48}\times\frac{35}{21}\times\frac{63}{14}\times\frac{9}{30}=\frac{2}{3}\times\frac{5}{3}\times\frac{9}{2}\times\frac{3}{10}=\frac{270}{180}=\frac{3}{2}\)
d)\(7-\frac{72}{48}\times\frac{56}{60}-3=7-\frac{3}{2}\times\frac{14}{15}-3\)
\(=7-\frac{7}{5}-3\)
\(=\frac{35}{5}-\frac{7}{5}-\frac{15}{5}\)
\(=\frac{13}{5}\)
#H
(Sai thì sửa)
Câu 1: \(\frac{17}{51}\)x \(\frac{45}{30}\)= \(\frac{1}{3}\)x \(\frac{3}{2}\)
= \(\frac{1}{2}\).
Câu 2: \(\frac{24}{15}\)x \(\frac{56}{72}\)x \(\frac{10}{14}\)= \(\frac{8}{5}\)x \(\frac{7}{9}\)x \(\frac{5}{7}\)
= \(\frac{56}{45}\)x \(\frac{5}{7}\)
= \(\frac{8}{9}\)
Câu 3: \(\frac{32}{48}\times\frac{35}{21}\times\frac{63}{14}\times\frac{9}{30}=\frac{2}{3}\times\frac{5}{3}\times\frac{9}{2}\times\frac{3}{10}=\frac{3}{2}\)
k nha
a)17/51x45/40=1/3x3/2=3/6=1/2
b)24/15x56/72x10/14=8/5x7/9x5/7=8/9
c)32/48x35/21x63/14x9/30=2/3x5/3x9/2x3/10=3/2
\(\frac{4}{3}\times\frac{9}{8}\times...\times\frac{81}{80}=\frac{2^2}{1\times3}\times\frac{3^2}{2\times4}\times...\times\frac{9^2}{8\times10}\)
\(=\frac{2\times3\times4\times...\times9}{1\times2\times3\times...\times8}\times\frac{2\times3\times4\times...\times9}{3\times4\times5\times...\times10}\\ =\frac{9}{1}\times\frac{2}{10}=\frac{9}{5}\)
4/3.9/8.16/15.25/24.36/35.49/48.64/63.81/80
=3/2.16/15.25/24.36/35.49/48.64/63.81/80
=5/3.36/35.49/48.64/63.81/80
=7/4.64/63.81/80
=9/5
+
A=\(\frac{1}{3}\)+\(\frac{1}{8}\)+\(\frac{1}{15}\)+\(\frac{1}{24}\)+\(\frac{1}{35}\)+\(\frac{1}{48}\)+\(\frac{1}{63}\)+\(\frac{1}{80}\)
A=\(\frac{1}{2}\)(\(\frac{1}{1\cdot3}\)+\(\frac{1}{2\cdot4}\)+\(\frac{1}{3\cdot5}\)+\(\frac{1}{4.6}\)+\(\frac{1}{5.7}\)+\(\frac{1}{6.8}\)+\(\frac{1}{7.9}\)+\(\frac{2}{8.10}\))
A=\(\frac{1}{2}\)(1-1/3 +1/2-1/4 + 1/3 -1/5 +1/4-1/6 +1/5 - 1/7 +1/6 -1/8 +1/7 - 1/9 +1/8 - 1/10)
A= \(\frac{1}{2}\)(1 + 1/2 -1/9 -1/10)
A=\(\frac{29}{45}\)
\(A=\frac{1}{3}+\frac{1}{8}+\frac{1}{15}+\frac{1}{24}+\frac{1}{35}+\frac{1}{48}+\frac{1}{63}+\frac{1}{80}\)
\(=\frac{1}{1\times3}+\frac{1}{2\times4}+\frac{1}{3\times5}+\frac{1}{4\times6}+\frac{1}{5\times7}+\frac{1}{6\times8}+\frac{1}{7\times9}+\frac{1}{8\times10}\)
\(=\frac{1}{2}\times\left[\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}\right)+\left(\frac{2}{2\times4}+\frac{2}{4\times6}+\frac{2}{6\times8}+\frac{2}{8\times10}\right)\right]\)
\(=\frac{1}{2}\times\left[\left(\frac{3-1}{1\times3}+\frac{5-3}{3\times5}+\frac{7-5}{5\times7}+\frac{9-7}{7\times9}\right)+\left(\frac{4-2}{2\times4}+\frac{6-4}{4\times6}+\frac{8-6}{6\times8}+\frac{10-8}{8\times10}\right)\right]\)
\(=\frac{1}{2}\times\left[\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)+\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\right)\right]\)
\(=\frac{1}{2}\times\left[\left(1-\frac{1}{9}\right)+\left(\frac{1}{2}-\frac{1}{10}\right)\right]\)
\(=\frac{29}{45}\)
a,\(\frac{4}{3}\)x \(\frac{9}{8}\)x \(\frac{16}{15}\)x \(\frac{25}{24}\)
= \(\frac{5}{3}\)
b, \(\frac{4}{3}\)x \(\frac{9}{8}\)x \(\frac{16}{15}\)x \(\frac{25}{24}\)x \(\frac{36}{35}\)x \(\frac{49}{48}\)x \(\frac{64}{63}\)x \(\frac{81}{80}\)
= \(\frac{9}{5}\)
\(\frac{1}{3}+\frac{1}{8}+\frac{1}{15}+\frac{1}{24}+\frac{1}{35}+\frac{1}{48}+\frac{1}{63}+\frac{1}{80}\)
\(=\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}\right)+\left(\frac{1}{8}+\frac{1}{24}+\frac{1}{48}+\frac{1}{80}\right)\)
\(=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)+\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right)\)
\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)+\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{7}-\frac{1}{9}\right)+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{8}-\frac{1}{10}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{9}\right)+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=\frac{1}{2}.\frac{8}{9}+\frac{1}{2}.\frac{2}{5}=\frac{1}{2}\left(\frac{8}{9}+\frac{2}{5}\right)=\frac{1}{2}.\frac{58}{45}=\frac{29}{45}\)
A= \(\frac{1}{3}+\frac{1}{8}+\frac{1}{15}+\frac{1}{24}+\frac{1}{35}+\frac{1}{48}+\frac{1}{63}+\frac{1}{80}\)
A= \(\frac{2}{2}.\left(\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+\frac{1}{4.6}+\frac{1}{5.7}+\frac{1}{6.8}+\frac{1}{7.9}+\frac{1}{8.10}\right)\)
A=\(\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\right)\)
\(A=\frac{1}{2}.\left(1-\frac{1}{9}+\frac{1}{2}-\frac{1}{10}\right)\)
A= tự tính
:)))))