K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2022

18:

1: Xét ΔBMC có

BP,CQ là các đường cao

BP cắt CQ tại E

DO đó: E là trực tâm

=>ME vuông góc với BC

Xét ΔPAB có

M là trung điểm của PA

ME//AB

DO đó: E là trung điểm của PB

=>ME//AB và ME=1/2AB

=>ME//NC và ME=NC

=>MECN là hình bình hành

2: Vì MECN là hình bình hành

nên MN//CE

=>MN vuông góc với BM

29 tháng 9 2020

Kẻ BP vuông góc với AC nhé! ko phải ở K đâu

1 tháng 10 2020

a) ∆MBC có hai đường cao BP và CQ cắt nhau tại E nên E là trực tâm của tam giác => ME là đường cao thứ ba => ME⊥BC (đpcm)

b) ABCD là hình chữ nhật (1) nên AB⊥BC kết hợp với ME⊥BC => ME // AB (2) mà M là trung điểm của AP nên E là trung điểm của BP => ME là đường trung bình của ∆APB =>  ME = 1/2AB và NC = 1/2CD (gt) nên ME = NC (do AB = CD)

Từ (1) và (2) suy ra ME//NC

Tứ giác MNCE có ME = NC và ME//NC nên là hình bình hành

c) Tứ giác MNCE là hình bình hành nên ^NMC = ^MCE 

Mà ^MCE + ^CMQ = 900 (∆MCQ vuông tại Q) nên ^NMC + ^CMQ = 900 => NMQ = 900 => BM vuông góc với MN (đpcm)

26 tháng 10 2019

Cho hình chữ nhật ABCD. Kẻ BP vuông góc AC ở P.Gọi M và N là trung điểm AP và CD. Kẻ CQ vuông góc BM ở Q và cắt BP ở E ' 1, Tứ Giác  MNCE là hình gì? 2 CM: Bm vuông góc MN

26 tháng 10 2019

a,  Xét tam giác BMC có CE vuông góc với BM , BE vuông góc  với CM 

=> E là trực tâm của tam giác BMC

=> ME vuông góc với BC mà AB vuông góc với BC

=> ME song song với AB

Xét tam giác BMC có AM=MP , ME song song vói AB

=> BE = PE => ME là đg trung bình của tam giác BMC

=> ME song song và bằng 1/2 AB mặt khác CN= 1/2 CD mà CD song song và bằng AB

=> NC song song và bằng ME=> MECN là hbh

b, Vì CE vuông góc với BM mà MN song song với CE 

=> MN vuông góc với BM

14 tháng 11 2023

Sửa đề: K là trung điểm của CH

a: Xét tứ giác APHQ có

\(\widehat{APH}=\widehat{AQH}=\widehat{PAQ}=90^0\)

Do đó: APHQ là hình chữ nhật

b: ΔCQH vuông tại Q

mà QK là đường trung tuyến

nên \(QK=KH=KC=\dfrac{CH}{2}\)

Xét ΔKQH có KQ=KH

nên ΔKQH cân tại K

c: \(\widehat{KQP}=\widehat{KQH}+\widehat{PQH}\)

\(=\widehat{KHQ}+\widehat{PAH}\)

\(=\widehat{HAB}+\widehat{HBA}=90^0\)

=>KQ\(\perp\)QP(1)

ΔHPB vuông tại P

mà PI là đường trung tuyến

nên PI=IH=IB

=>ΔPIH cân tại I

\(\widehat{QPI}=\widehat{QPH}+\widehat{IPH}\)

\(=\widehat{QAH}+\widehat{IHP}\)

\(=\widehat{HAC}+\widehat{HCA}=90^0\)

=>QP\(\perp\)PI(2)

Từ (1) và (2) suy ra PI//QK

4 tháng 12 2023

Cảm ơn bạn nhiều

 

11 tháng 7 2023

A B C P Q K H

a/

\(AQ\perp AB;PH\perp AB\) => AQ//PH

\(AP\perp AC;QH\perp AC\) => AP//QH

=> APHQ là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Ta có \(\widehat{A}=90^o\)

=> APHQ là hình chữ nhật (Hình bình hành có 1 góc vuông là HCN)

b/

Xét tg vuông QHC có

KH=KC (gt)

\(\Rightarrow QK=\dfrac{AC}{2}\) (Trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

Mà \(KH=KC=\dfrac{HC}{2}\)

=> QK=KH => tg KQH cân tại K