Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{\left(7\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\frac{2^2}{7^2}-\frac{4}{343}}\)
\(B=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{\frac{8}{2}-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)
\(B=\frac{\frac{343}{343}-\frac{49}{343}+\frac{7}{343}-\frac{1}{343}}{4-\frac{4}{7}+\frac{28}{343}-\frac{4}{343}}\)
\(B=\frac{\frac{300}{343}}{\frac{28}{7}-\frac{4}{7}+\frac{24}{343}}\)
\(B=\frac{\frac{300}{343}}{\frac{24}{7}+\frac{24}{343}}\)
\(B=\frac{\frac{300}{343}}{\frac{1323}{343}+\frac{24}{343}}\)
\(B=\frac{300}{343}:\frac{1347}{343}\)
\(B=\frac{100}{449}\)
\(A=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(A=\frac{2^{12}.3^5-2^{12}.3^6}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}.7^6}{5^9.7^3+5^9.2^3.7^3}\)
\(A=\frac{2^{12}.3^5\left(1-3\right)}{2^{12}.3^5.\left(3+1\right)}-\frac{5^{10}.7^3.\left(1-7^3\right)}{5^9.7^3.\left(1+8\right)}\)
\(A=\frac{-2}{4}-\frac{5.\left(-342\right)}{9}\)
\(A=\frac{-1}{2}+\frac{1710}{9}\)
\(A=\frac{-1}{2}+190\)
\(A=\frac{-1}{2}+\frac{380}{2}\)
\(A=\frac{379}{2}\)
đặt A = 1/4.9 + 1/9.14+ 1/14.19 + .....1/44.49
ta có 5.A = 5/4.9 + 5/9.14+ 5/14.19 + .....5/44.49 = 1/4- 1//9 + 1/9 - 1/14+........+ 1/44 -1/49 = 1/4 - 149 = 45/196
suy ra A = 9/196
đặt B = 1-3--5-...-49 = 1 - (3+5+ ....+ 49)
đặt C = 3+5+...+49 khoảng cách là d = 2
số các số hạng là (49-3)/2 + 1 = 24
tổng C = (49+3)/2 x 24 = 624
suy ra B = 1-624 = -623
vậy A = 9/196 .(-623)/89 = -9/28
\(\left(-\frac{5}{12}\right):\frac{7}{3}-\left(-\frac{5}{12}\right):\frac{7}{4}=\left(-\frac{5}{12}\right):\left(\frac{7}{3}-\frac{7}{4}\right)=\left(-\frac{5}{12}\right):\frac{7}{12}=-\frac{5}{7}\)
\(\left[\left(\frac{2}{5}\right)^0\right].\frac{19}{13}-\left(\frac{7}{3}\right)^{2019}.\frac{3}{7}^{2019}\)
\(=\left(\frac{2}{5}\right)^0.\frac{19}{13}-\left(\frac{7}{3}.\frac{3}{7}\right)^{2019}\)
\(=1.\frac{19}{13}-1^{2019}\)
\(=1.\frac{19}{13}-1\)
\(=\frac{19}{13}-1\)
\(=\frac{6}{13}\)
Bài giải
a, \(\left(-\frac{5}{12}\right)\text{ : }\frac{7}{3}-\left(-\frac{5}{12}\right)\text{ : }\frac{7}{4}\)
\(=\left(-\frac{5}{12}\right)\text{ : }\frac{7}{3}-\left(-\frac{5}{12}\right)\text{ : }\frac{7}{4}\)
\(=\left(-\frac{5}{12}\right)\cdot\frac{3}{7}-\left(-\frac{5}{12}\right)\cdot\frac{4}{7}\)
\(=\frac{-15}{84}+\frac{20}{84}=\frac{5}{84}\)
b, \(\left[\left(\frac{2}{5}\right)^0\right]^{2020}\cdot\frac{19}{37}-\left(\frac{7}{3}\right)^{2019}\cdot\frac{3^{2019}}{7}\)
\(=1^{2020}\cdot\frac{19}{37}-\frac{7^{2019}}{3^{2019}}\cdot\frac{3^{2019}}{7}\)
\(=\frac{19}{37}-7^{2018}\)
\(A=9-\frac{3}{5}+\frac{2}{3}-7-\frac{7}{5}+\frac{3}{2}-3+\frac{9}{5}-\frac{5}{2}\)
\(=\left(9-7-3\right)+\left(\frac{9}{5}-\frac{7}{5}-\frac{3}{5}\right)+\left(\frac{3}{2}-\frac{5}{2}\right)\)
\(=-2-\frac{1}{5}=-\frac{11}{5}\)
a) \(=\left(\left(-\frac{1}{4}-\frac{5}{3}\right)+\frac{7}{33}\right)-\left(-\frac{15}{12}+\frac{6}{11}-\frac{48}{49}\right)\)
\(=\left(-\frac{23}{12}+\frac{7}{33}\right)+\frac{15}{12}-\frac{6}{11}+\frac{48}{49}\)
\(=\left(-\frac{23}{12}+\frac{15}{12}\right)+\left(\frac{9}{33}-\frac{6}{11}\right)+\frac{48}{49}\)
\(=-\frac{2}{3}-\frac{3}{11}+\frac{48}{49}\)
\(=\frac{65}{1617}\)
b) \(=\frac{11}{125}+\left(-\frac{17}{18}+\frac{4}{9}\right)+\left(-\frac{5}{7}+\frac{17}{14}\right)\)
\(=\frac{11}{125}-\frac{1}{2}+\frac{1}{2}\)
\(=\frac{11}{125}\)
\(\left(\frac{2}{3}-\frac{4}{7}\right):\frac{5}{9}+\left(-\frac{8}{7}+\frac{1}{3}\right):\frac{5}{9}\)
\(=\left[\left(\frac{2}{3}-\frac{4}{7}\right)+\left(-\frac{8}{7}+\frac{1}{3}\right)\right]:\frac{5}{9}\)
\(=\left(\frac{2}{3}-\frac{4}{7}-\frac{8}{7}+\frac{1}{3}\right)\cdot\frac{9}{5}\)
\(=\left(1-\frac{12}{7}\right)\cdot\frac{9}{5}\)
\(=-\frac{5}{7}\cdot\frac{9}{5}\)
\(-\frac{9}{7}\)
\(\left(\frac{2}{3}-\frac{4}{7}\right):\frac{5}{9}+\left(-\frac{8}{7}+\frac{1}{3}\right):\frac{5}{9}\)
\(=\left(\frac{14}{21}-\frac{12}{21}\right):\frac{5}{9}+\left(-\frac{24}{21}+\frac{7}{21}\right):\frac{5}{9}\)
\(=\frac{2}{21}:\frac{5}{9}+\frac{-17}{21}:\frac{5}{9}\)
\(=\left(\frac{2}{21}+\frac{-17}{21}\right):\frac{5}{9}\)
\(=\frac{-15}{21}:\frac{5}{9}\)
\(=\frac{-15}{21}.\frac{9}{5}\)
\(=\frac{-9}{7}\)
\(=\frac{99}{35}\)
\(\frac{3}{5}.\left(\frac{5}{3}-\frac{2}{7}\right)-\left(\frac{7}{3}-\frac{3}{7}\right).\frac{3}{5}\)
\(=\frac{3}{5}.\text{[}\left(\frac{5}{3}-\frac{2}{7}\right)-\left(\frac{7}{3}-\frac{3}{7}\right)\text{]}\)
\(=\frac{3}{5}.\text{[}\frac{5}{3}-\frac{2}{7}-\frac{7}{3}+\frac{3}{7}\text{]}\)
\(=\frac{3}{5}.\text{[}\left(\frac{5}{3}-\frac{7}{3}\right)-\left(\frac{2}{7}-\frac{3}{7}\right)\text{]}\)
\(=\frac{3}{5}.\text{[}\frac{-2}{3}-\frac{-1}{7}\text{]}\)
\(=\frac{3}{5}.\left(\frac{-2}{3}+\frac{1}{7}\right)\)
\(=\frac{3}{5}.\left(\frac{-14}{21}+\frac{3}{21}\right)\)
\(=\frac{3}{5}.\frac{-11}{21}\)
\(=\frac{3.\left(-11\right)}{5.21}\)
\(=\frac{-11}{5.7}=\frac{-11}{35}\)
Chúc bạn học tốt
Đặt \(A=1+7+7^2+...7^{50}\)
\(7\cdot A=7+7^2+7^3+.....+7^{51}\)
\(7\cdot A-A=\left(7+7^2+7^3+.....+7^{51}\right)-\left(1+7+7^2+....+7^{50}\right)\)
\(A.\left(7-1\right)=\left(7-7\right)+\left(7^2-7^2\right)+.....+\left(7^{50}-7^{50}\right)+7^{51}-1\)
\(A\cdot6=7^{51}-1\Rightarrow A=\frac{7^{51}-1}{6}\)