Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi biểu thức trên là A
Ta có
\(A=\frac{n^3-2n^2+3}{n-2}\)
\(A=\frac{n^2\left(n-2\right)+3}{n-2}\)
Để \(A\in Z\Leftrightarrow\left(n-2\right)\in U\left(3\right)\)
Vậy ta có:
\(n-2=-3\\ \Rightarrow n=-1\)
\(n-2=-1\\ \Rightarrow n=1\)
\(n-2=1\\ \Rightarrow n=3\)
\(n-2=3\\ \Rightarrow n=5\)
a: \(P=-\left|5-x\right|+2019\le2019\forall x\)
Dấu '=' xảy ra khi x=5
b) \(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^n.3^2+3^n\right)-\left(2^{n-1}.2^3+2^{n-1}.2\right)\)
\(=3^n\left(3^2+1\right)-2^{n-1}\left(2^3+2\right)=3^n.10-2^{n-1}.10\)
\(=10\left(3^n-2^{n-1}\right)⋮10\)
Bấm vô đây để tham khảo:
Câu hỏi của Phạm Võ Thanh Trúc - Toán lớp 6 - Học toán với OnlineMath
Lời giải:
a. Với $n$ nguyên khác -3, để $B$ nguyên thì:
$2n+9\vdots n+3$
$\Rightarrow 2(n+3)+3\vdots n+3$
$\Rightarrow 3\vdots n+3$
$\Rightarrow n+3\in\left\{\pm 1; \pm 3\right\}$
$\Rightarrow n\in\left\{-2; -4; 0; -6\right\}$
b.
$B=\frac{2n+9}{n+3}=\frac{2(n+3)+3}{n+3}=2+\frac{3}{n+3}$
Để $B_{\max}$ thì $\frac{3}{n+3}$ max
Điều này đạt được khi $n+3$ là số nguyên dương nhỏ nhất
Tức là $n+3=1$
$\Leftrightarrow n=-2$
c. Để $B$ min thì $\frac{3}{n+3}$ min
Điều này đạt được khi $n+3$ là số nguyên âm lớn nhất
Tức là $n+3=-1$
$\Leftrightarrow n=-4$
\(\dfrac{x-1}{3}=\dfrac{2-x}{-2}\)
⇔ \(\dfrac{x-1}{3}=\dfrac{x-2}{2}\)
⇔ \(3x-6-2x+2=0\)
⇔ \(x-4=0\)
⇒ \(x=4\)
16^n : 2^n = 64
=> (2^4)^n : 2^n = 2^6
=> 2^4.n : 2^n = 2^6
=> 4n - n = 6
=> 3n = 6
=> n =2
k giúp mình
làm ơn