Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 5\(^{-1}\)25\(^n\)=125
\(\frac{1}{5}\)25\(^n\)=125
25\(^n\)=625
n=2
b, 3\(^{-1}\)3\(^n\)+6. 3\(^{n-1}\)=7.3\(^6\)
3\(^{n-1}\)+6. 3\(^{n-1}\)=7.3\(^6\)
3\(^{n-1}\)(6+1)=7.3\(^6\)=3\(^{n-1}\).7
3\(^6\)=3\(^{n-1}\)
6=n-1
n=7
c,3\(^4\)<1/9.27^n <3^10
3^4<1/(3^2) .3^(3n)<3^10
3^4<3^(3n-2)<3^10
3n-2 chia 3 dư 1 nên 3n-2 = 7
n=3
d,25<5^n:5<625
5^2<5^(n-1)<5^4
n-1=3 nên n=4
A = 1/2! + 2/3! + 3/4! + ... + 2015/2016!
A = 2/2! - 1/2! + 3/3! - 1/3! + 4/4! - 1/4! + ... + 2016/2016! - 1/2016!
A = 1 - 1/2! + 1/2! - 1/3! + 1/3! - 1/4! + ... + 1/2015! - 1/2016!
A = 1 - 1/2016! < 1 (đpcm)
M = 1/52 + 1/62 + 1/72 + ... + 1/1002
M > 1/5.6 + 1/6.7 + 1/7.8 + ... + 1/100.101
M > 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + ... + 1/100 - 1/101
M > 1/5 - 1/101 > 1/5 - 1/30 = 1/6 = B
=> M > B (đpcm)
C = 1/20 + 1/21 + 1/22 + ... + 1/200
C > 1/200 + 1/200 + 1/200 + 1/200
(181 phân số 1/200)
C > 1/200 . 181 = 181/200 > 180/200 = 9/10 (đpcm)
\(S=1+3+3^2+3^3+3^4+...+3^{2018}\)
Đặt \(3S=3\left(1+3+3^2+3^3+3^4+...+3^{2018}\right)\)
=> \(3S=3+3^2+3^3+3^4+3^5+...+3^{2019}\)
=> \(3S-S=\left(3+3^2+3^3+3^4+3^5+3^{2019}\right)-\left(1+3+3^2+3^3+3^4+...+3^{2018}\right)\)=> \(2S=3^{2019}-1\)
=> \(2S-3^{2018}=3^{2019}-1-3^{2018}\)
Vậy \(A=3^{2019}-1-3^{2018}\)
_Chúc bạn học tốt_
x2 + 1/4x = 0
<=> ( x + 1/8 )2 - 1/64 = 0
<=> ( x + 1/8 )2 = 1/64
<=> \(\orbr{\begin{cases}x+\frac{1}{8}=\frac{1}{8}\\x+\frac{1}{8}=-\frac{1}{8}\end{cases}}\)
<=> \(\orbr{\begin{cases}x=0\\x=-\frac{1}{4}\end{cases}}\)
( x + 1/2 ) ( x - 1/2 ) > 0
<=> \(\orbr{\begin{cases}x_1+\frac{1}{2}>0\\x_2-\frac{1}{2}>0\end{cases}}\)hoặc \(\orbr{\begin{cases}x_1+\frac{1}{2}< 0\\x_2-\frac{1}{2}< 0\end{cases}}\)
<=> \(\orbr{\begin{cases}x_1>-\frac{1}{2}\\x_2>\frac{1}{2}\end{cases}}\)hoặc \(\orbr{\begin{cases}x_1< -\frac{1}{2}\\x_2< \frac{1}{2}\end{cases}}\)
<=> x > 1/2 hoặc x < - 1/2
\(\frac{x+3}{x-2}\le0\)
<=> \(\frac{x-2+5}{x-2}\le0\)
<=> 1 + \(\frac{5}{x-2}\le0\)
<=> \(\frac{5}{x-2}\le-1\)
\(\Leftrightarrow x-2\le-5\)
\(\Leftrightarrow x\le-3\)
b) Tính
\(A=\frac{16^3.3^{10}+120.6^9}{4^6.3^{12}+6^{11}}\)
\(=\frac{\left(2^4\right)^3.3^{10}+2^3.3.5.2^9.3^9}{\left(2^2\right)^6.3^{12}+2^{11}.3^{11}}\)
\(=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}+2^{11}.3^{11}}\)
\(=\frac{2^{12}.3^{10}.\left(1+5\right)}{2^{11}.3^{11}.\left(2.3+1\right)}\)
\(=\frac{2.6}{3.7}=\frac{12}{21}=\frac{4}{7}\)
Vậy : \(A=\frac{4}{7}\)
651<531+631+731+…+202331<40
165<153+163<153+163+173+…+120233<153+163+173+…+120233+…+120233651<531+631<531+631+731+…+202331<531+631+731+…+202331+…+202331
165<153+163<153+163+173<153+163+173+…+120233651<531+631<531+631+731<531+631+731+…+202331
Chúng ta có thể thấy rằng:
173+…+120233<165×(20233−73+1)731+…+202331<651×(20233−73+1)
173+…+120233<165×20161731+…+202331<651×20161
173+…+120233<165×311731+…+202331<651×311
173+…+120233<31165731+…+202331<65311
Từ đó, chúng ta có thể kết luận rằng:
165<153+163+173+…+120233<31165651<531+631+731+…+202331<65311
Vì 31165≈4.7846<4065311≈4.7846<40
=) đpcm