Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2 x 31 x 12 + 4 x 6 x 42 + 8 x 27 x 3
= 24 x 31 + 24 x 42 + 24 x 27
= 24 x ( 31 + 42 + 27 )
= 24 x 100
= 2400
\(a,=\frac{7-1}{1.3.7}+\frac{9-3}{3.7.9}+\frac{13-7}{7.9.13}+\frac{15-9}{9.13.15}\)\(+\frac{19-13}{13.15.19}\)
\(=\frac{1}{1.3}-\frac{1}{3.7}+\frac{1}{3.7}-\frac{1}{7.9}+\frac{1}{7.9}-\frac{1}{9.13}+\frac{1}{9.13}-\frac{1}{13.15}+\frac{1}{13.15}-\frac{1}{15.19}\)
\(=\frac{1}{1.3}-\frac{1}{15.19}=\frac{95}{285}-\frac{1}{285}=\frac{94}{285}\)
\(b,=\frac{1}{6}.\left(\frac{6}{1.3.7}+\frac{6}{3.7.9}+\frac{6}{7.9.13}+\frac{6}{9.13.15}+\frac{6}{13.15.19}\right)\)
làm giống như trên
\(c,=\frac{1}{8}.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\right)\)
\(=\frac{1}{16}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{48.49.50}\right)\)
\(=\frac{1}{16}.\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{50-48}{48.49.50}\right)\)
\(=\frac{1}{16}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)\)
\(=\frac{1}{16}.\left(\frac{1}{2}-\frac{1}{2450}\right)=\frac{1}{16}.\left(\frac{1225}{2450}-\frac{1}{2450}\right)=\frac{153}{4900}\)
\(d,=\frac{5}{7}.\left(\frac{7}{1.5.8}+\frac{7}{5.8.12}+\frac{7}{8.12.15}+...+\frac{7}{33.36.40}\right)\)
\(=\frac{5}{7}.\left(\frac{8-1}{1.5.8}+\frac{12-5}{5.8.12}+\frac{15-8}{8.12.15}+...+\frac{40-33}{33.36.40}\right)\)
\(=\frac{5}{7}.\left(\frac{1}{1.5}-\frac{1}{5.8}+\frac{1}{5.8}-\frac{1}{8.12}+\frac{1}{8.12}-\frac{1}{12.15}+...+\frac{1}{33.36}-\frac{1}{36.40}\right)\)
\(=\frac{5}{7}.\left(\frac{1}{5}-\frac{1}{1440}\right)=\frac{5}{7}.\left(\frac{288}{1440}-\frac{1}{1440}\right)=\frac{41}{288}\)
P/S: . là nhân nha
\(=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+\frac{1}{6\times7}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(=1-\frac{1}{7}\)
\(=\frac{6}{7}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+.....+\frac{1}{42}\)
=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..........+\frac{1}{6.7}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.........+\frac{1}{6}-\frac{1}{7}\)
=\(1-\frac{1}{7}\)
=\(\frac{6}{7}\)
1/2=1/1.2
1/6=1/2.3
1/12=1/3.4
1/20=1/4.5
1/30=1/5.6
1/42=1/6.7
ta có 1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7
= 1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7
=1/1-1/7
=6/7
Phạm Tùng Sơn
Tính nhanh:
1/20 + 1/12 + 1/6 + 1/2 + 1
= 1 + ( 1/20 + 1/2 ) + ( 1/12 + 1/6 )
= 1 + ( 1/20 + 10/20 ) + ( 1/12 + 2/12)
= 1 + 11/20 + 3/12
= ( 1 + 11/20 ) + 1/4
= 20/20 + 11/20 + 5/20
= 36/20 = 9/5
^^ Học tốt nhé!
\(\frac{1}{20}+\frac{1}{12}+\frac{1}{6}+\frac{1}{2}+1\)
\(=1+\left(\frac{1}{20}+\frac{10}{20}\right)+\left(\frac{1}{12}+\frac{2}{12}\right)\)
\(=1+\frac{11}{20}+\frac{3}{12}\)
\(=\left(1+\frac{11}{20}\right)+\frac{1}{4}\)
\(=\frac{20}{20}+\frac{11}{20}+\frac{5}{20}\)
\(=\frac{9}{5}\)
( 1-1/2) . (1-1/3).(1-1/4).......(1-1/2016) . (1-1/2017)
=1/2.2/3.3.4x...x2015/2016.2016/2017
=1.2.3.4. ... .2015.2016/2.3.4.5. ... .2016.2017
(giống nhau bạn gạch đi )
=1/2017
\(\frac{1}{2\cdot x}-2021-\frac{1}{4}-\frac{1}{12}-\frac{1}{24}-...-\frac{1}{222}=\frac{6}{11}\)
\(\frac{1}{2\cdot x}-2021-\left(\frac{1}{4}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{222}\right)=\frac{6}{11}\)
....
Cái dãy \(\frac{1}{4}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{222}\) nó không có quy luật, không tính được
Sửa đề\(\frac{1}{2x-2021}-\frac{1}{4}-\frac{1}{12}-\frac{1}{24}-...-\frac{1}{220}=\frac{6}{11}\)
=> \(\frac{1}{2x-2021}-\left(\frac{1}{4}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{220}\right)=\frac{6}{11}\)
=> \(\frac{1}{2x-2021}-\frac{1}{2}\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)=\frac{6}{11}\)
=> \(\frac{1}{2x-2021}-\frac{1}{2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)=\frac{6}{11}\)
=> \(\frac{1}{2x-2021}-\frac{1}{2}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{10}-\frac{1}{11}\right)=\frac{6}{11}\)
=> \(\frac{1}{2x-2021}-\frac{1}{2}\left(1-\frac{1}{11}\right)=\frac{6}{11}\)
=> \(\frac{1}{2x-2021}-\frac{1}{2}.\frac{10}{11}=\frac{6}{11}\)
=> \(\frac{1}{2x-2021}-\frac{5}{11}=\frac{6}{11}\)
=> \(\frac{1}{2x-2021}=1\)
=> 2x - 2021 = 1
=> 2x = 2022
=> x = 1011
Vậy x = 1011
A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...........+\frac{1}{49.50}+\frac{1}{50.51}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-........+\frac{1}{49}-\frac{1}{50}+\frac{1}{50}-\frac{1}{51}\)
= \(1-\frac{1}{51}=\frac{50}{51}\)
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)\(=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{98}-\frac{1}{99}\right)+\left(\frac{1}{99}-\frac{1}{100}\right)\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
b) \(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}+\frac{1}{110}\)\(=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}+\frac{1}{10.11}\)
\(=\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{110}\)
\(=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
c) \(\frac{2}{11.13}+\frac{2}{13.15}+\frac{2}{15.17}+...+\frac{2}{97.99}\) \(=\frac{13-11}{11.13}+\frac{15-13}{13.15}+\frac{17-15}{15.17}+...+\frac{99-97}{97.99}\)
\(=\frac{1}{11}+\frac{1}{13}-\frac{1}{13}+\frac{1}{15}-\frac{1}{15}+\frac{1}{17}...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{11}-\frac{1}{99}=\frac{8}{99}\)
A = 1/6 + 1/12 + 1/20
A = 1/2.3 + 1/3.4 + 1/4.5
A = 1/2 -1/3 + 1/3 - 1/4 + 1/4 - 1/5
A= 1/2 - 1/5
A = 3/10
Ta có:
\(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}\)
\(=\dfrac{1}{2}-\dfrac{1}{5}\)
\(=\dfrac{5-2}{10}=\dfrac{3}{10}\)