Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(156^2-124^2+44^2-24^2+156\cdot88+248\cdot24\)
\(=-\left(124^2-248\cdot24+24^2\right)+\left(156^2+156\cdot88+44^2\right)\)
\(=-\left(124-24\right)^2+\left(156+44\right)^2\)
\(=40000-10000=30000\)
Gọi hai số chẵn đó là 2n và 2n+2 . Theo giả thiết ta có:
(2n+2)^2 - (2n)^2 = 156
<=> (2n+2-2n).(2n+2+2n) = 156
<=> 2.(2n+2+2n) = 156
=> 2n+2+2n = 78
Tổng hai số bằng 78. Vậy trung bình cộng của hai số đó là:
78 : 2 = 39
Bài 1:
\(a,=\left(156-56\right)^2=100^2=10000\\ b,=\left(x-y\right)^2-4z^2=\left(x-y-2z\right)\left(x-y+2z\right)\)
Bài 2:
\(a,=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x-y\right)\left(x+y-5\right)\\ b,=x^2+2x-6x-12=\left(x+2\right)\left(x-6\right)\\ c,=3\left(x^2-2xy-16+y^2\right)=3\left[\left(x-y\right)^2-16\right]\\ =3\left(x-y-4\right)\left(x-y+4\right)\)
a) \(2x+13y=156\) (1)
.Ta thấy 156 và 2y đều chia hết cho 2 nên \(13y\) chia hết cho 2,do đó y chia hết cho 2 (do 13 và 2 nguyên tố cùng nhau)
Đặt \(y=2t\left(t\in Z\right)\).Thay vào phương trình (1),ta được:\(2x+13.2t=156\Leftrightarrow x+13t=78\)
Do đó \(\hept{\begin{cases}x=78-13t\\y=2t\end{cases}}\) (t là số nguyên tùy ý)
b)Biến đổi phương trình thành: \(2xy-4x=7-y\)
\(=2x\left(y-2\right)=7-y\).Ta thấy \(y\ne2\)(vì nếu y = 2 thì ta có 0.2x = 5 , vô ngiệm )
Do đó \(x=\frac{7-y}{y-2}=\frac{7+2-y-2}{y-2}=\frac{9}{y-2}-1\) .Do vậy để x nguyên thì \(\frac{9}{y-2}\) nguyên
hay \(y-2\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\).Đến đây lập bảng tìm y là xong!
c) \(3xy+x-y=1\)
\(\Leftrightarrow9xy+3x-3y=3\)
\(\Leftrightarrow9xy+3x-3y-1=2\)
\(\Leftrightarrow3x\left(3y+1\right)-1\left(3y+1\right)=2\)
\(\Leftrightarrow\left(3x-1\right)\left(3y+1\right)=2\).Đến đây phương trình đã được đưa về phương trình ước số,bạn tự giải (mình lười quá man!)
Lời giải:
Gọi hai số chẵn liên tiếp là $a$ và $a+2$. Theo bài ra ta có:
$(a+2)^2-a^2=156$
$\Leftrightarrow (a+2-a)(a+2+a)=156$
$\Leftrightarrow 2(2a+2)=156$
$\Leftrightarrow 2a+2=78$
$\Leftrightarrow a=38$
Vậy hai số chẵn cần tìm là $38$ và $40$
Gọi hai số chẵn liên tiếp là 2k và 2k+2
Theo đề, ta có phương trình:
\(\left(2k+2\right)^2-\left(2k\right)^2=156\)
\(\Leftrightarrow4k^2+8k+4-4k^2=156\)
\(\Leftrightarrow8k=152\)
hay k=19
Vậy: Hai số cần tìm là 38 và 40
\(x\left(x-y\right)+y\left(y-x\right)=x\left(x-y\right)-y\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y\right)=\left(x-y\right)^2=\left(124-24\right)^2=100^2=10000\)
\(\left(x-3\right)^2-\left(x+1\right)^3+12x\left(x-1\right)=\frac{49}{4}-\frac{1}{8}+\frac{\left(-6\right).\left(-3\right)}{2}\)
\(=\frac{97}{8}+9=\frac{169}{8}\)
X(X-Y)+Y(Y-X)=X2 -XY +Y2 -XY=(X-Y)2 =(124-24)2 =1002 =10000
(x-3)2 -(x+1)3 +12x(x-1)=x2 -6x+9-x3 -3x2 -3x-1+12x2 -12x=-x3 +10x2 -9x+8
a,A=5x2z-10xyz+5y2z
=5z(x2-2xy+y2)
=5z(x-y)2
Thay x=124,y=24,z=2 vào A ta được:
A=5.2(124-24)2=10.1002=10000
b,B=2x2+2y2-x2z+z-y2z-2
=2(x2+y2)-z(x2+y2)+(z-2)
=(2-z)(x2+y2)-(2-z)
=(2-z)(x2+y2-1)
Thay x=1,y=1,z=-1 vào B
B=(2+1)(12+12-1)=3
c, C=x2-y2+2y-1
=x2-(y2-2y+1)
=x2-(y-1)2
=(x-y+1)(x+y-1)
=(75-26+1)(75+26-1)
=50.100=5000
\(156^2-124^2+44^2-24^2+156+88+248\cdot24\)
\(=156^2+44^2+156+88-\left(124-24\right)^2\)
\(=26515-10000\)
=16515