K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2022

Tham khảo: (mk chx chắc lắm đâu nha)

undefined

2 tháng 3 2022
26 tháng 6 2015

Ta có:\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}=\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)=\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)

@Ác Mộng ở đoạn cuối tự nhiên bỏ mất số 2 luôn, giải sai rồi kìa

\(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\)(50 số 1/100)

\(\RightarrowĐPCM\)

AH
Akai Haruma
Giáo viên
5 tháng 5 2021

Lời giải:

Hiển nhiên \(S>0\)

\(S=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< \frac{1}{51}+\frac{1}{51}+...+\frac{1}{51}=\frac{50}{51}<1\)

Do đó $0< S<1$ nên $S$ không là số tự nhiên.