K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2022

a, Ta có a + b + c = 1 + 5 - 6 = 0 

Vậy pt có 2 nghiệm x = 1 ; x = -6 

b, \(x^2-2mx+4m-4=0\)

\(\Delta'=m^2-4m+4=\left(m-2\right)^2\ge0\)

Vậy pt luôn có 2 nghiệm 

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4m-4\end{matrix}\right.\)

\(\left(x_1+x_2\right)^2-2x_1x_2-8=0\)

\(\Leftrightarrow4m^2-2\left(4m-4\right)-8=0\Leftrightarrow4m^2-8m=0\Leftrightarrow m=0;m=2\)

12 tháng 5 2022

a) \(x^2+5x-6\) = 0

Ta có: a + b + c = 1 + 5 + ( - 6 ) = 0

 ⇔ \(\left\{{}\begin{matrix}x_1=1\\x_2=-6\end{matrix}\right.\)

Vậy S = \(\left\{1;-6\right\}\) 

b) \(x^2-2mx+4m-4=0\)

Δ' = \(\left(-m\right)^2\) - ( 4m - 4 )

Δ' = \(m^2\) - 4m +4

\(\left(m-2\right)^2\ge0\forall m\ne2\)

Vậy phương trình luôn có 2 nghiệm

* Theo định lí Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4m-4\end{matrix}\right.\)

* Theo đề bài : \(x_1^2+x_2^2-8=0\)

⇔ \(\left(x_1+x_2\right)^2-2x_1x_2-8=0\)

⇒ \(\left(2m\right)^2\)- 2.( 4m - 4 ) - 8 = 0

⇔ \(4m^2\) - 8m + 8 - 8 = 0

⇔ \(4m^2\) - 8m = 0

⇔ 4m.( m - 2 ) = 0

⇔ \(\left[{}\begin{matrix}4m=0\\m-2=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}m=0\left(thoảmãn\right)\\m=2\left(loại\right)\end{matrix}\right.\) 

Vậy m = 0 thì t/m đề bài

 

a:Sửa đề: x^2-(m+1)x+2m-8=0

Khi m=2 thì (1) sẽ là x^2-3x-4=0

=>(x-4)(x+1)=0

=>x=4 hoặc x=-1

b: Δ=(-m-1)^2-4(2m-8)

=m^2+2m+1-8m+32

=m^2-6m+33

=(m-3)^2+24>=24>0

=>(1) luôn có hai nghiệm pb

\(x_1^2+x_2^2+\left(x_1-2\right)\left(x_2-2\right)=11\)

=>(x1+x2)^2-2x1x2+x1x2-2(x1+x2)+4=11

=>(m+1)^2-(2m-8)-2(m+1)+4=11

=>m^2+2m+1-2m+8-2m-2+4=11

=>m^2-2m=0

=>m=0 hoặc m=2

a: Khi m=1 thì (1): x^2-2(1-2)x+1^2-5-4=0

=>x^2+2x-8=0

=>(x+4)(x-2)=0

=>x=2 hoặc x=-4

b: Δ=(2m-4)^2-4(m^2-5m-4)

=4m^2-16m+16-4m^2+20m+16

=4m+32

Để pt có hai nghiệm phân biệt thì 4m+32>0

=>m>-8

x1^2+x2^2=-3x1x2-4

=>(x1+x2)^2+x1x2+4=0

=>(2m-4)^2+m^2-5m-4+4=0

=>4m^2-16m+16+m^2-5m=0

=>5m^2-21m+16=0

=>(m-1)(5m-16)=0

=>m=16/5 hoặc m=1

Δ=(m+1)^2-4(2m-8)

=m^2+2m+1-8m+32

=m^2-6m+33

=(m-3)^2+24>=24

=>Phương trình luôn có hai nghiệm pb

x1^2+x2^2+(x1-2)(x2-2)=11

=>(x1+x2)^2-2x1x2+x1x2-2(x1+x2)+4=11

=>(m+1)^2-(2m-8)-2(m+1)+4=11

=>m^2+2m+1-2m+8-2m-2-7=0

=>m^2-2m-8=0

=>(m-4)(m+2)=0

=>m=4 hoặc m=-2

a: Khi m=4 thì (1) sẽ là:

x^2-6x-7=0

=>x=7 hoặc x=-1

b: Sửa đề: 2x1+3x2=-11

x1+x2=2m-2

=>2x1+3x2=-11 và 2x1+2x2=4m-4

=>x2=-11-4m+4=-4m-7 và x1=2m-2+4m+7=6m+5

x1*x2=-2m+1

=>-24m^2-20m-42m-35+2m-1=0

=>-24m^2-60m-34=0

=>\(m=\dfrac{-15\pm\sqrt{21}}{12}\)

30 tháng 5 2017

đầu bài thiếu yêu cầu rồi

30 tháng 5 2017

| x1​2 - x22​​| = 15 mình viết thiếu giải hộ mình với.Cảm ơn bạn

a: Khi x=2 thì pt sẽ là 2^2-2(m-1)*2-2m-1=0

=>4-2m-1-4(m-1)=0

=>-2m+3-4m+4=0

=>-6m+7=0
=>m=7/6

19 tháng 1

(a) Khi \(m=2,\left(1\right)\Leftrightarrow x^2-4x-5=0\left(2\right)\).

Phương trình (2) có \(a-b+c=1-\left(-4\right)+\left(-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{c}{a}=5\end{matrix}\right.\).

Vậy: Khi \(m=2,S=\left\{-1;5\right\}\).

 

(b) Điều kiện: \(x_1,x_2\ne0\Rightarrow m\in R\)

Phương trình có nghiệm khi:

\(\Delta'=\left(-m\right)^2-1\cdot\left(-m^2-1\right)\ge0\)

\(\Leftrightarrow2m^2+1\ge0\left(LĐ\right)\)

Suy ra, phương trình (1) có nghiệm với mọi \(m\).

Theo định lí Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m\\x_1x_2=\dfrac{c}{a}=-m^2-1\end{matrix}\right.\)

Theo đề: \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=-\dfrac{5}{2}\)

\(\Leftrightarrow\dfrac{x_1^2+x_2^2}{x_1x_2}=-\dfrac{5}{2}\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=-\dfrac{5}{2}\)

\(\Leftrightarrow2\left(x_1+x_2\right)^2+x_1x_2=0\)

\(\Leftrightarrow2\left(2m\right)^2+\left(-m^2-1\right)=0\)

\(\Leftrightarrow7m^2=1\Leftrightarrow m=\pm\dfrac{\sqrt{7}}{7}\) (thỏa mãn).

Vậy: \(m=\pm\dfrac{\sqrt{7}}{7}.\)

19 tháng 1

bạn giải thích kĩ hộ mik vói cái <=> cuối cùng sao ra như vậy

loading...