Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ x+\dfrac{1}{2}=-\dfrac{5}{3}\\ x=-\dfrac{5}{3}-\dfrac{1}{2}\\ x=-\dfrac{13}{6}\\ Vậyx=-\dfrac{13}{6}\)
\(2,\\ \dfrac{1}{3}-x=\dfrac{3}{5}\\ x=\dfrac{1}{3}-\dfrac{3}{5}\\ x=-\dfrac{4}{15}\\ Vậyx=-\dfrac{4}{15}\)
\(3,\\ 3-4+x=\dfrac{7}{2}\\ -1+x=\dfrac{7}{2}\\ x=\dfrac{7}{2}+1\\ x=\dfrac{9}{2}\\ Vậyx=\dfrac{9}{2}\)
\(4,\\ x-\dfrac{4}{3}=-\dfrac{7}{9}\\ x=-\dfrac{7}{9}+\dfrac{4}{3}\\ x=\dfrac{15}{27}\\ Vậyx=\dfrac{15}{27}\)
\(5,\\ x-\left(-\dfrac{7}{3}\right)=\dfrac{5}{6}\\ x=\dfrac{5}{6}-\dfrac{7}{3}\\ x=-\dfrac{27}{18}\\ Vậyx=-\dfrac{27}{18}\)
\(6,\\ x-\dfrac{1}{5}=\dfrac{9}{10}\\ x=\dfrac{9}{10}+\dfrac{1}{5}\\ x=\dfrac{11}{10}\\ Vậyx=\dfrac{11}{10}\)
\(7,\\ x+\dfrac{5}{12}=\dfrac{3}{8}\\ x=\dfrac{3}{8}-\dfrac{5}{12}\\ x=-\dfrac{1}{24}\\ Vậyx=-\dfrac{1}{24}\)
\(8,\\ x+\dfrac{5}{4}=\dfrac{7}{6}\\ x=\dfrac{7}{6}-\dfrac{5}{4}\\ x=-\dfrac{9}{24}\\ Vậyx=-\dfrac{9}{24}\)
\(9,\\ x-\dfrac{2}{7}=\dfrac{1}{35}\\ x=\dfrac{1}{35}+\dfrac{2}{7}\\ x=\dfrac{11}{35}\\ Vậyx=\dfrac{11}{35}\\ 10,\\ x-\dfrac{1}{5}=-\dfrac{7}{10}\\ x=-\dfrac{7}{10}+\dfrac{1}{5}\\ x=-\dfrac{1}{2}\\ Vậyx=-\dfrac{1}{2}\)
ahiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii hãy ấn a
a)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{3}{4}+...+\frac{1}{9}-\frac{1}{10}\)
= \(1+\left(\frac{-1}{2}+\frac{1}{2}\right)+\left(\frac{-1}{3}+\frac{1}{3}\right)+...+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{10}\)
= \(1-\frac{1}{10}\)
=\(\frac{9}{10}\)
b)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
=\(1+\left(\frac{-1}{3}+\frac{1}{3}\right)+\left(\frac{-1}{5}+\frac{1}{5}\right)+\left(\frac{-1}{7}+\frac{1}{7}\right)+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{11}\)
=\(1-\frac{1}{11}\)
= \(\frac{10}{11}\)
c) đặt A=\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9.11}\)
\(\frac{1}{3}A\)=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(\frac{2}{3}A\)=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(\frac{2}{3}A\)=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(\frac{2}{3}A\)=\(1+\left(\frac{-1}{3}+\frac{1}{3}\right)+\left(\frac{-1}{5}+\frac{1}{5}\right)+\left(\frac{-1}{7}+\frac{1}{7}\right)+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{11}\)
\(\frac{2}{3}A\)=\(\frac{10}{11}\)
A= \(\frac{10}{11}:\frac{2}{3}\)
A= \(\frac{10}{11}.\frac{3}{2}\)=\(\frac{15}{11}\)
d) giả tương tự câu c kết quả \(\frac{25}{11}\)
tổng đặc biệt đó bạn
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{9\times10}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(1-\frac{1}{10}=\frac{9}{10}\)
những câu sau cũng áp dụng như vậy nhé
1/ \(x+\dfrac{1}{2}=\dfrac{-5}{3}\)
\(x=\dfrac{-5}{3}-\dfrac{1}{2}\)
\(x=\dfrac{-10}{6}-\dfrac{3}{6}\)
Vậy \(x=\dfrac{-13}{6}\)
2/\(\dfrac{1}{3}-x=\dfrac{3}{5}\)
\(-x=\dfrac{3}{5}-\dfrac{1}{3}\)
\(-x=\dfrac{9}{15}-\dfrac{5}{15}\)
\(-x=\dfrac{4}{15}\)
Vậy \(x=\dfrac{-4}{15}\)
3/ \(3-4+x=\dfrac{7}{2}\)
\(-4+x=\dfrac{7}{2}-3\)
\(-4+x=\dfrac{7}{2}-\dfrac{6}{2}\)
\(-4+x=\dfrac{1}{2}\)
\(x=\dfrac{1}{2}+4\)
\(x=\dfrac{1}{2}+\dfrac{8}{2}\)
Vậy \(x=\dfrac{9}{2}\)
4/ \(x-\dfrac{4}{3}=\dfrac{-7}{9}\)
\(x=\dfrac{-7}{9}+\dfrac{4}{3}\)
\(x=\dfrac{-7}{9}+\dfrac{12}{9}\)
Vậy \(x=\dfrac{5}{9}\)
5/ \(x-\dfrac{-7}{2}=\dfrac{5}{6}\)
\(x=\dfrac{5}{6}-\dfrac{7}{2}\)
\(x=\dfrac{5}{6}-\dfrac{21}{6}\)
Vậy \(x=\dfrac{-16}{6}=\dfrac{-8}{3}\)
6/ \(x-\dfrac{1}{5}=\dfrac{9}{10}\)
\(x=\dfrac{9}{10}+\dfrac{1}{5}\)
\(x=\dfrac{9}{10}+\dfrac{2}{10}\)
Vậy \(x=\dfrac{11}{10}\)
7/ \(x+\dfrac{5}{12}=\dfrac{3}{8}\)
\(x=\dfrac{3}{8}-\dfrac{5}{12}\)
\(x=\dfrac{9}{24}-\dfrac{10}{24}\)
Vậy \(x=\dfrac{-1}{24}\)
8/ \(x+\dfrac{5}{4}=\dfrac{7}{6}\)
\(x=\dfrac{7}{6}-\dfrac{5}{4}\)
\(x=\dfrac{14}{12}-\dfrac{15}{12}\)
Vậy \(x=\dfrac{-1}{12}\)
9/ \(x-\dfrac{2}{7}=\dfrac{1}{35}\)
\(x=\dfrac{1}{35}+\dfrac{2}{7}\)
\(x=\dfrac{1}{35}+\dfrac{10}{35}\)
Vậy \(x=\dfrac{11}{35}\)
10 /\(x-\dfrac{1}{5}=\dfrac{-7}{10}\)
\(x=\dfrac{-7}{10}+\dfrac{1}{5}\)
\(x=\dfrac{-7}{10}+\dfrac{2}{10}\)
Vậy \(x=\dfrac{-5}{10}=\dfrac{-1}{2}\)
a) Đặt \(A=\frac{7^{15}}{1+7+7^2+...+7^{14}}\)
Đặt \(B=1+7+7^2+...+7^{14}\)
\(\Rightarrow7B=7+7^2+...+7^{15}\)
\(\Rightarrow7B-B=6B=7^{15}-1\)
\(\Rightarrow B=\frac{7^{15}-1}{6}\)
\(\Rightarrow A=\frac{7^{15}-1+1}{\frac{7^{15}-1}{6}}=\left(7^{15}-1\right).\frac{6}{7^{15}-1}+\frac{6}{7^{15}-1}=6+\frac{6}{7^{15}-1}\)
Tự làm tiếp nha
b, Ta có:\(\dfrac{1+3+3^2+.....+3^{10}}{1+3+3^2+.....+3^9}\) \(=\dfrac{1}{1+3+3^2+...+3^9}+\dfrac{3+3^2+...+3^{10}}{1+3+3^2+...+3^9}\)\(=\dfrac{1}{1+3+3^2+...+3^9}+\dfrac{3.\left(1+3+3^2+...+3^9\right)}{1+3+3^2+...+3^9}\)
\(=\dfrac{1}{1+3+3^2+...+3^9}+3< 4\)
\(\Rightarrow\) \(\dfrac{1+3+3^2+...+3^{10}}{1+3+3^2+...+3^9}< 4\) \(\left(1\right)\)
Ta có :\(\dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}\)
\(=\dfrac{1}{1+5+5^2+...+5^9}+\dfrac{5+5^2+...+5^{10}}{1+5+5^2+....+5^9}\)
\(=\dfrac{1}{1+5+5^2+...+5^9}+\dfrac{5.\left(1+5+5^2+...+5^9\right)}{1+5+5^2+...+5^9}\)
\(=\dfrac{1}{1+5+5^2+...+5^9}+5>5\)
\(\Rightarrow\) \(\dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}>5\) \(\left(2\right)\)
Từ \(\left(1\right)và\left(2\right)\)
\(\Rightarrow\dfrac{1+3+3^2+...+3^{10}}{1+3+3^2+...+3^9}< \dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}\)
Vậy \(\dfrac{1+3+3^2+...+3^{10}}{1+3+3^2+...+3^9}< \dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}\)
a, Đặt \(A\)\(=\dfrac{7^{15}}{1+7+7^2+...+7^{14}}\)
\(\Rightarrow\) \(\dfrac{1}{A}\) \(=\dfrac{1+7+7^2+...+7^{14}}{7^{15}}=\dfrac{1}{7^{15}}+\dfrac{7}{7^{15}}+\dfrac{7^2}{7^{15}}+...+\dfrac{7^{14}}{7^{15}}\)
\(=\dfrac{1}{7^{15}}+\dfrac{1}{7^{14}}+\dfrac{1}{7^{13}}+....+\dfrac{1}{7}\)
Đặt \(B=\dfrac{9^{15}}{1+9+9^2+...+9^{14}}\)
\(\Rightarrow\dfrac{1}{B}=\dfrac{1+9+9^2+...+9^{14}}{9^{15}}=\dfrac{1}{9^{15}}+\dfrac{9}{9^{15}}+\dfrac{9^2}{9^{15}}+...+\dfrac{9^{14}}{9^{15}}\)
\(=\dfrac{1}{9^{15}}+\dfrac{1}{9^{14}}+\dfrac{1}{9^{13}}+...+\dfrac{1}{9}\)
Mà \(\dfrac{1}{7^{15}}>\dfrac{1}{9^{15}};\dfrac{1}{7^{14}}>\dfrac{1}{9^{14}};\dfrac{1}{7^{13}}>\dfrac{1}{9^{13}};....;\dfrac{1}{7}>\dfrac{1}{9}\)
\(\Rightarrow\dfrac{1}{A}>\dfrac{1}{B}\) \(\Rightarrow A< B\)
Vậy\(\dfrac{7^{15}}{1+7+7^2+...+7^{14}}>\dfrac{9^{15}}{1+9+9^2+....+9^{14}}\)
\(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}=\frac{1+5\left(1 +5+5^2+...+5^8\right)}{1+5+5^2+...+5^8}=5+\frac{1}{1+5+5^2+...+5^8} \)
\(B=\frac{1+3+3^2+....+3^9}{1+3+3^2+....+3^8}=\frac{1+3\left(1+3+3^2+....+3^8\right)}{1+3+3^2+....+3^8}=3+\frac{1}{1+3+3^2+....+3^8}\)
\(=5+\frac{1}{1+3+3^2+....+3^8}-2\)
Có: \(\frac{1}{1+5+5^2+...+5^8}>0\) và \(\frac{1}{1+3+3^2+....+3^8}-2< 0\)
\(\Rightarrow A>B\)
B = \(\frac{1}{10.9}+\frac{1}{18.13}+\frac{1}{26.17}+...+\frac{1}{802.405}\)
B = \(\frac{2}{10.18}+\frac{2}{18.26}+\frac{2}{26.34}+...+\frac{2}{802.810}\)
B = \(\frac{1}{4}.\left(\frac{1}{10}-\frac{1}{18}+\frac{1}{18}-\frac{1}{26}+\frac{1}{26}-\frac{1}{34}+...+\frac{1}{802}-\frac{1}{810}\right)\)
B = \(\frac{1}{4}.\left(\frac{1}{10}-\frac{1}{810}\right)=\frac{1}{4}.\frac{8}{81}\)
B = \(\frac{2}{81}\)
\(\frac{1}{5}.\left(\frac{1}{2}-\frac{1}{3}\right):\left(\frac{-9}{10}\right)+\left(\frac{-7}{3}\right)\)
\(=\frac{1}{5}.\frac{1}{6}:\left(\frac{-9}{10}\right)+\left(\frac{-7}{3}\right)\)
\(=\frac{1}{30}.\left(\frac{-10}{9}\right)+\left(\frac{-7}{3}\right)\)
\(=\left(\frac{-1}{27}\right)+\left(\frac{-7}{3}\right)\)
\(=\frac{-64}{27}\)