Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C2: (2x - 3)3 + (6x - 17)3
= (2x - 3 + 6x - 17)\(\left[\left(2x-3\right)^2-\left(2x-3\right)\left(6x-17\right)+\left(6x-17\right)^2\right]\)
= (8x - 20)(4x2 - 12x + 9 - 12x2 + 34x + 18x - 51 + 36x2 - 204x + 289)
= (8x - 20)(4x2 - 12x2 + 36x2 - 12x + 34x + 18x - 204x + 9 - 51 + 289)
= (8x - 20)(28x2 - 164x + 247)
Câu 1:
Ta có: \(3x^3-5x-2\)
\(=3x^3+3x^2-3x^2-3x-2x-2\)
\(=\left(x+1\right)\left(3x^2-3x-2\right)\)
a: \(=2x^2-6x+x-3-20x+8x^2\)
\(=10x^2-25x-3\)
b: \(=x^2+4x+4-2\left(x^2-9\right)+10\)
\(=x^2+4x+14-2x^2+18\)
\(=-x^2+4x+32\)
Nếu ol thì tham khảo nah nguoiemtinhthong.
1.1
2x2+5x−1=7x3−1−−−−−√2x2+5x−1=7x3−1
⇔2(x2+x+1)+3(x−1)−7(x−1)(x2+x+1)−−−−−−−−−−−−−−−√(1)⇔2(x2+x+1)+3(x−1)−7(x−1)(x2+x+1)(1)
Đặt a=x−1−−−−−√;b=x2+x+1−−−−−−−−√;a≥0;b>0a=x−1;b=x2+x+1;a≥0;b>0
pt (1) trở thành 3a2+2b2−7ab=03a2+2b2−7ab=0
a=2ba=2b v a=13ba=13b
Các bạn tự giải quyết tiếp nhé.
1.2
TXĐ D=[1;+∞)D=[1;+∞)
đặt a=x−1−−−−−√4;b=x+1−−−−−√4;a,b≥0a=x−14;b=x+14;a,b≥0
pt (2) trở thành 3a2+2b2−5ab=03a2+2b2−5ab=0
⇔a=b⇔a=b v a=23ba=23b
...
1.3
D=[3;+∞)D=[3;+∞)
Đặt a=x2+4x−5−−−−−−−−−√;b=x−3−−−−−√;a,b≥0a=x2+4x−5;b=x−3;a,b≥0
pt (3) trở thành 3a+b=11a2−19b2−−−−−−−−−√3a+b=11a2−19b2
⇔2a2−6ab−20b2=0⇔2a2−6ab−20b2=0
⇒a=5b⇒a=5b
...
1.4
ĐK
⇔2x2−2x+2=3(x−2)x(x+1)−−−−−−−−−−−−√2x2−2x+2=3(x−2)x(x+1)
⇔(x2−2x)+2(x+1)=3(x2−2x)(x+1)−−−−−−−−−−−−−√2(x2−2x)+2(x+1)=3(x2−2x)(x+1)
Đặt x2−2x−−−−−−√=ax2−2x=a; x+1−−−−−√=bx+1=b (a;b\geq0)
⇔2a2+2b2=3ab
1.5
Đặt 4x2−4x−10=t4x2−4x−10=t (t \geq 0)
⇔t=t+4x2−2x−−−−−−−−−−√t=t+4x2−2x
⇔t2−t−4x2+2x=0t2−t−4x2+2x=0
Δ=1−4(2x−4x2)=(4x−1)2Δ=1−4(2x−4x2)=(4x−1)2
⇒t=1−2xt=1−2x hoặc t=2xt=2x
1.1
2.2+5.-1=7.3-1-----v2.2+5.-1=7.3-1
2(.2+x+1)+3(x-1)
3a+b=11a2-19b2
tóm tắt
Tách 7x3=8x3-x3
Rồi lấy -x3và các hạng tử còn lại viết thành hằng đẳng thức lập phương một tổng
Sau khi làm xong 2 bước trên sẽ có 8x3-(x+y)3
Từ đó ta tách tiếp theo hằng đẳng thức hiệu hai lập phương