Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình cx ko bik nx tại vì này là thầy mình chụp bài của bên trường gửi qua lớp mình á, này là thầy mình gửi qua á
a) Theo hệ quả định lý Ta let ta có:
ΔABC có B’C’ // BC (B’ ∈ AB; C’ ∈ AC) ⇒
ΔAHC có H’C’ // HC (H’ ∈ AH, C’ ∈ AC) ⇒
a) Ta có : d // BC
=> B'C' // BC
Xét \(\Delta AB'H'\)và \(\Delta ABH\)( B'H' // BH )
Theo hệ quả của định lý Ta-lét
=> \(\frac{AB'}{AB}=\frac{AH'}{AH}\)(1)
Xét \(\Delta AB'C'\) và \(\Delta ABC\)( B'C' // BC )
Theo hệ quả của định lý Ta-lét
=> \(\frac{AB'}{AB}=\frac{B'C'}{BC}\)(2)
Từ (1) và (2)
=> \(\frac{AH'}{AH}=\frac{B'C'}{BC}\)( ĐPCM )
b) \(\frac{SAB'C'}{SABC}=\frac{\frac{1}{2}AH'.B'C'}{\frac{1}{2}AH.BC}=\frac{AH'}{AH}.\frac{B'C'}{BC}=\frac{1}{3}.\frac{1}{3}=\frac{1}{9}\)
=> \(SAB'C'=\frac{1}{9}\Rightarrow SAB'C'=\frac{SABC}{9}=\frac{67,5}{9}=7,5\left(cm^2\right)\)
Theo tính chất đường thẳng song song :
\(AK=KI=IH\)( gt )
=> AE = EM = MB
=> AF = FN = NC
Theo bài ra ta có : \(\frac{MN}{BC}=\frac{AM}{MB}=\frac{2MB}{MB}=2\)cm
\(\frac{EF}{BC}=\frac{AE}{EB}=\frac{AE}{2AE}=\frac{1}{2}\)cm
hay \(2EF=BC\)(*)
Ta có : \(S_{ABC}=\frac{1}{2}AH.BC=90\)( gt )
\(\Delta AMN\)có EF là đường trung bình ( AE = EM ; AF = FN )
Suy ra : EF // MN và EF = 1/2 MN
Ta có : \(S_{MNEF}=\frac{\left(EF+MN\right).IK}{2}\)mà \(IK=\frac{1}{3}AH\)
\(=\frac{\left(EF+MN\right).\frac{AH}{3}}{2}=\frac{\left(EF+2EF\right).\frac{AH}{3}}{2}\)
\(=\frac{EF.AH}{2}\)mà \(2EF=BC\)cmt (*)
\(=\frac{\frac{BC}{2}.AH}{2}=\frac{BC.AH}{4}\)
Vậy \(S_{MNEF}=\frac{180}{4}=45\)cm2
a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC∼ΔHBA(g-g)
a) Chứng minh =
Vì B’C’ // với BC => = (1)
Trong ∆ABH có BH’ // BH => = (2)
Từ 1 và 2 => =
b) B’C’ // BC mà AH ⊥ BC nên AH’ ⊥ B’C’ hay AH’ là đường cao của tam giác AB’C’.
Áp dụng kết quả câu a) ta có: AH’ = AH
= = => B’C’ = BC
=> SAB’C’= AH’.B’C’ = .AH.BC
=>SAB’C’= (AH.BC)
mà SABC= AH.BC = 67,5 cm2
Vậy SAB’C’= .67,5= 7,5 cm2
a) Áp dụng hệ quả định lý Ta-let ta có:
ΔABC có MN // BC (M ∈ AB, N ∈ AC) ⇒
ΔAHC có KN // HC (K ∈ AH, N ∈ AC) ⇒
Chứng minh tương tự ta có:
Mà ta có:
b) Ta có: