Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 1/3+1/6+1/12+1/24+1/48+1/96
= (1/3+1/6)+(1/12+1/24)+(1/48+1/96)
= (2/6+1/6)+(2/24+1/24)+(2/96+1/96)
= 1/2+1/8+1/32
= 16/32+4/32+1/32
= 21/32
Vậy A=21/32
Giải:
A=1/3+1/6+1/12+1/24+1/48+1/96
A=1/3+(1/2.3+1/3.4)+(1/4.6+1/6.8)+1/96
A=1/3+(1/2-1/3+1/3-1/4)+[1/2.(2/4.6+2/6.8)]+1/96
A=1/3+(1/2-1/4)+[1/2.(1/4-1/6+1/6-1/8)]+1/96
A=1/3+1/4+[1/2.(1/4-1/8)]+1/96
A=1/3+1/4+[1/2.1/8]+1/96
A=1/3+1/4+1/16+1/96
A=7/12+7/96
A=21/32
N=7/2(2/1.3+....+2/13.15)
N=7/2.(1/1-1/3+.....+1/13-1/15)
N=7/2.(1-1/15)
N=7/2.(14/15)
N=7.14/2.15
a: \(=\dfrac{-5}{8}+\dfrac{7}{12}=\dfrac{-15}{24}+\dfrac{14}{24}=\dfrac{-1}{24}\)
b: \(=\dfrac{3}{4}-\dfrac{5}{6}+\dfrac{11}{12}=\dfrac{9}{12}-\dfrac{10}{12}+\dfrac{11}{12}=\dfrac{10}{12}=\dfrac{5}{6}\)
c: \(=\dfrac{6}{36}-\dfrac{1}{36}=\dfrac{5}{36}\)
d: \(=\dfrac{5}{12}+\dfrac{5}{12}=\dfrac{10}{12}=\dfrac{5}{6}\)
e: \(=\dfrac{-8}{56}-\dfrac{7}{56}=\dfrac{-15}{56}\)
f: \(=\dfrac{-5}{15}+\dfrac{3}{25}=\dfrac{-25}{75}+\dfrac{9}{75}=\dfrac{-16}{75}\)
a) Ta có: \(D=\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{24}+\dfrac{1}{48}+\dfrac{1}{96}\)
\(=\dfrac{2}{3}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{24}+\dfrac{1}{24}-\dfrac{1}{48}+\dfrac{1}{48}-\dfrac{1}{96}\)
\(=\dfrac{2}{3}-\dfrac{1}{96}\)
\(=\dfrac{63}{96}=\dfrac{21}{32}\)
b)
Sửa đề: \(E=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+...+\dfrac{1}{2048}\)
Ta có: \(E=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+...+\dfrac{1}{2048}\)
\(\Leftrightarrow\dfrac{1}{2}\cdot E=\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+...+\dfrac{1}{4096}\)
\(\Leftrightarrow\dfrac{1}{2}\cdot E=\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{16}+...+\dfrac{1}{2048}-\dfrac{1}{4096}\)
\(\Leftrightarrow\dfrac{E}{2}=\dfrac{1}{2}-\dfrac{1}{4096}=\dfrac{2047}{4096}\)
hay \(E=\dfrac{2047}{2048}\)
a: \(\dfrac{3}{5}-\left(-\dfrac{1}{2}\right)=\dfrac{3}{5}+\dfrac{1}{2}=\dfrac{6+5}{10}=\dfrac{11}{10}\)
b: \(-\dfrac{48}{96}+\dfrac{37}{148}\)
\(=-\dfrac{1}{2}+\dfrac{1}{4}=\dfrac{-2}{4}+\dfrac{1}{4}=-\dfrac{1}{4}\)
c: \(\dfrac{1}{5}+\dfrac{-1}{6}+\dfrac{1}{7}+\dfrac{-1}{8}+\dfrac{1}{9}+\dfrac{1}{8}+\dfrac{-1}{7}+\dfrac{1}{6}+\dfrac{-1}{5}\)
\(=\left(\dfrac{1}{5}-\dfrac{1}{5}\right)+\left(-\dfrac{1}{6}+\dfrac{1}{6}\right)+\left(\dfrac{1}{7}-\dfrac{1}{7}\right)+\left(-\dfrac{1}{8}+\dfrac{1}{8}\right)+\dfrac{1}{9}\)
\(=0+0+0+0+\dfrac{1}{9}=\dfrac{1}{9}\)
a)\(=\left(\frac{-3}{13}-\frac{10}{13}\right)+\left(\frac{7}{12}+\frac{5}{12}\right)\)
\(=-1+1=0\)
b)=
a) Sai vì 8 không là ước chung của 12 và 24
Sửa lại:
Ư(12) = {1; 2; 3; 4; 6; 12}
Ư(24) = {1; 2; 3; 4; 6; 8; 12; 24}
=> ƯC(12, 24) = {1; 2; 3; 4; 6; 12}
b) Đúng.
Ư(36) = {1; 2; 3; 4; 6; 9; 12; 18; 36}
Ư(12) = {1; 2; 3; 4; 6; 12}
Ư(48) = {1; 2; 3; 4; 6; 12; 24; 48}
=> ƯC(36, 12, 48) = {1; 2; 3; 4; 6; 12}.
\(A=\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{24}+\dfrac{1}{48}+\dfrac{1}{96}\)
\(\dfrac{1}{2}A=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{24}+\dfrac{1}{48}+\dfrac{1}{96}+\dfrac{1}{192}\)
\(A-\dfrac{1}{2}A=\dfrac{1}{3}-\dfrac{1}{192}\)
\(\dfrac{1}{2}A=\dfrac{21}{64}\)
\(A=\dfrac{21}{64}:\dfrac{1}{2}=\dfrac{21}{32}\)