K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Khi x=3 thì pt sẽ là:

3^2-2*3+m+3=0

=>m-6+9+3=0

=>m+6=0

=>m=-6

x1+x2=2

=>x2=2-3=-1

b:

Δ=(-2)^2-4(m+3)

=4-4m-12

=-4m-8

Để phương trình có hai nghiệm phân biệt thì:

-4m-8>=0

=>m<=-2

x1^3+x2^3=8

=>(x1+x2)^3-3x1x2(x1+x2)=8

=>2^3-3*2(m+3)=8

=>6(m+3)=0

=>m+3=0

=>m=-3(nhận)

c: Thay m=-2 vào pt, ta được:

\(x^2-2x+1=0\)

hay x=1

f: Thay x=-3 vào pt, ta được:

\(9-3m+m+3=0\)

=>-2m+12=0

hay m=6

27 tháng 5 2021

a) Thay x=-1 vào pt có:5+m=0 <=> m=-5

Thay m=-5 vào pt có:\(x^2-4x-5=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

Vậy nghiệm còn lại là 5

b) Để pt có hai nghiệm <=> \(\Delta\ge\) <=>\(16-4m\ge0\) <=>\(m\le4\)

Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m\end{matrix}\right.\)

Có \(\left(3x_1+1\right)\left(3x_2+1\right)=4\)

\(\Leftrightarrow9x_1x_2+3\left(x_1+x_1\right)+1=4\)

\(\Leftrightarrow9m+3.4+1=4\)

\(\Leftrightarrow m=-1\) (thỏa)

Vậy m=-1

27 tháng 5 2021

a) `x=-1` là nghiệm `=> (-1)^2-4.(-1)+m=0 <=> m=-5`

`=>` PT: `x^2-4x-5=0 =>` Nghiệm còn lại là: `x=5`

b) PT có 2 nghiệm phân biệt `<=> \Delta'>0 <=> 2^2-m>0 <=> m < 4`

Viet: `x_1+x_2=4`

`x_1x_2=m`

Theo đề: `(3x_1+1)(3x_2+1)=4`

`<=> 3x_1x_2+3(x_1+x_2)+1=4`

`<=> 3m+3.4+1=4`

`<=> m=-9`

Vậy `m=-9`.

15 tháng 4 2021

b, Để phương trình có 2 nghiệm \(\Delta\ge0\)

hay \(\left(2m+8\right)^2-4.m^2=4m^2+32m+64-4m^2=32m+64\ge0\)

\(\Leftrightarrow32m\ge64\Leftrightarrow m\ge2\)

Theo Vi et ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+8\\x_1x_2=\dfrac{c}{a}=m^2\end{matrix}\right.\)

mà \(\left(x_1+x_2\right)^2=4m^2+32m+64\Rightarrow x_1^2+x_2^2=4m^2+32m+64-2x_1x_2\)

\(=4m^2+32m+64-2m^2=2m^2+32m+64\)

Lại có : \(x_1^2+x_2^2=-2\)hay \(2m^2+32m+66=0\Leftrightarrow m=-8+\sqrt{31}\left(ktm\right);m=-8-\sqrt{31}\left(ktm\right)\)

a) Thay m=8 vào phương trình, ta được:

\(x^2-2\cdot\left(8+4\right)x+8^2=0\)

\(\Leftrightarrow x^2-24x+64=0\)

\(\text{Δ}=\left(-24\right)^2-4\cdot1\cdot64=576-256=320\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{24+8\sqrt{5}}{2}=12+4\sqrt{5}\\x_2=\dfrac{24-8\sqrt{5}}{2}=12-4\sqrt{5}\end{matrix}\right.\)

Vậy: Khi m=8 thì phương trình có hai nghiệm phân biệt là \(x_1=12+4\sqrt{5};x_2=12-4\sqrt{5}\)

NV
12 tháng 4 2021

\(\Delta'=1+m^2-1=m^2>0\Rightarrow\) pt có 2 nghiệm pb khi \(m\ne0\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-m^2+1\end{matrix}\right.\)

Do \(x_1\) là nghiệm của pt nên:

\(x_1^2-2x_1-m^2+1=0\Rightarrow x_1^3-2x_1^2-m^2x_1+x_1=0\)

\(\Rightarrow x_1^3-2x_1^2-m^2x_1=-x_1\)

Thế vào bài toán:

\(\left(2x_1-x_2\right)\left(-x_1+2x_2\right)=-3\)

\(\Leftrightarrow-2x_1^2-2x_2^2+5x_1x_2=-3\)

\(\Leftrightarrow-2\left(x_1+x_2\right)^2+9x_1x_2=-3\)

\(\Leftrightarrow-8+9\left(-m^2+1\right)=-3\)

\(\Leftrightarrow m^2=\dfrac{4}{9}\Rightarrow m=\pm\dfrac{2}{3}\)

29 tháng 5 2021

a) Có: `\Delta'=(m-2)^2-(m^2-4m)=m^2-4m+4-m^2+4m=4>0 forall m`

`=>` PT luôn có 2 nghiệm phân biệt với mọi `m`.

b) Viet: `x_1+x_2=-2m+4`

`x_1x_2=m^2-4m`

`3/(x_1) + x_2=3/(x_2)+x_1`

`<=> 3x_2+x_1x_2^2=3x_1+x_1^2 x_2`

`<=> 3(x_1-x_2)+x_1x_2(x_1-x_2)=0`

`<=>(x_1-x_2).(3+x_1x_2)=0`

`<=> \sqrt((x_1+x_2)^2-4x_1x_2) .(3+x_1x_2)=0`

`<=> \sqrt((-2m+4)^2-4(m^2-4m)) .(3+m^2-4m)=0`

`<=>  4.(3+m^2-4m)=0`

`<=> m^2-4m+3=0`

`<=>` \(\left[{}\begin{matrix}m=3\\m=1\end{matrix}\right.\)

Vậy `m \in {1;3}`.

NV
21 tháng 4 2023

a.

Do \(x_1=-1\) là nghiệm

\(\Rightarrow\left(m-3\right).\left(-1\right)^2+\left(m+5\right).\left(-1\right)-m+7=0\)

\(\Rightarrow m-3-m-5-m+7=0\)

\(\Rightarrow m=-1\)

Theo định lý Viet:

\(x_1+x_2=-\dfrac{m+5}{m-3}=1\Rightarrow x_2=1-x_1=2\)

b.

Đề bài câu này sai, với \(m=3\) pt này chỉ có 1 nghiệm \(x=-\dfrac{1}{2}\)

21 tháng 4 2023

a.

Do x1=−1�1=−1 là nghiệm

⇒(m−3).(−1)2+(m+5).(−1)−m+7=0⇒(�−3).(−1)2+(�+5).(−1)−�+7=0

⇒m−3−m−5−m+7=0⇒�−3−�−5−�+7=0

⇒m=−1⇒�=−1

Theo định lý Viet:

x1+x2=−m+5m−3=1⇒x2=1−x1=2�1+�2=−�+5�−3=1⇒�2=1−�1=2

b.

Đề bài câu này sai, với m=3�=3 pt này chỉ có 1 nghiệm x=−12

1)Cho pt: x2-2mx+2m-3=0a)Tìm m để pt có nghiệm bằng -2. Tìm nghiệm còn lạib)Tìm m để pt có 2 nghiệm đều dương2)Một oto đi quãng đường AB dài 80km trong 1 thời gian đã định. 3434 quãng đường đầu oto chạy nhanh hơn dự định 10km/h. Quãng đường còn lại oto chạy chậm hơn dự định 15km/h. Biết rằng oto đến B đúng giờ quy định. Tính thời gian oto đi hết quãng đường AB?3) Cho C là 1 điểm nằm trên đoạn thẳng...
Đọc tiếp

1)Cho pt: x2-2mx+2m-3=0

a)Tìm m để pt có nghiệm bằng -2. Tìm nghiệm còn lại

b)Tìm m để pt có 2 nghiệm đều dương

2)Một oto đi quãng đường AB dài 80km trong 1 thời gian đã định. 3434 quãng đường đầu oto chạy nhanh hơn dự định 10km/h. Quãng đường còn lại oto chạy chậm hơn dự định 15km/h. Biết rằng oto đến B đúng giờ quy định. Tính thời gian oto đi hết quãng đường AB?

3) Cho C là 1 điểm nằm trên đoạn thẳng AB (C ≠A, C≠B). Trên cùng một nửa mặt phẳng có bờ là đường thẳng AB kẻ 2 tia Ax, By cùng vuông góc với AB. Trên tia Ax lấy điểm I (I≠A), tia vuông góc với CI tại C cắt By tại K. Đường tròn đường kính IC cắt IK tại P

CM:

a)Tứ giác CPKB nội tiếp được đường tròn. Xác định tâm của tròn đó

b)AI.BK=AC.CB

c)Tam giác APB vuông

2

Bài 1: 

a) Thay x=-2 vào phương trình, ta được:

\(\left(-2\right)^2-2m\cdot\left(-2\right)+2m-3=0\)

\(\Leftrightarrow4+4m+2m-3=0\)

\(\Leftrightarrow6m=-1\)

hay \(m=-\dfrac{1}{6}\)

Áp dụng hệ thức Vi-et, ta được: 

\(x_1+x_2=2m\)

\(\Leftrightarrow x_2-2=\dfrac{-1}{3}\)

hay \(x_2=\dfrac{5}{3}\)

Bài 1: 

b) Ta có: \(\Delta=\left(-2m\right)^2-4\cdot1\cdot\left(2m-3\right)\)

\(=4m^2-8m+12\)

\(=4m^2-2\cdot2m\cdot2+4+8\)

\(=\left(2m-2\right)^2+8>0\forall m\)

Do đó: Phương trình luôn có hai nghiệm phân biệt với mọi m

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1\cdot x_2=2m-3\end{matrix}\right.\)

Để phương trình có hai nghiệm đều dương thì

\(\left\{{}\begin{matrix}\Delta>0\\x_1+x_2>0\\x_1\cdot x_2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2m>0\\2m-3>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\2m>3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\m>\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow m>\dfrac{3}{2}\)