K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

a)\(12x^3+4x^2-27x-9\)

\(=12x^3-27x+4x^2-9\)

\(=3x\left(4x^2-9\right)+\left(4x^2-9\right)\)

\(=\left(3x+1\right)\left(4x^2-9\right)\)

\(=\left(3x+1\right)\left(2x-3\right)\left(2x+3\right)\)

b)\(7x\left(y-4\right)^2-\left(4-y\right)^3\)

\(=7x\left(y-4\right)^2+\left(y-4\right)^3\)

\(=\left(y-4\right)^2\left(7x+y-4\right)\)

2 tháng 8 2017

thak ban

Bài 4:

a) Ta có: \(x^3+6x^2+12x+8\)

\(=x^3+2x^2+4x^2+8x+4x+8\)

\(=x^2\left(x+2\right)+4x\left(x+2\right)+4\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+4x+4\right)\)

\(=\left(x+2\right)^3\)

b) Ta có: \(x^3-3x^2+3x-1\)

\(=x^3-x^2-2x^2+2x+x-1\)

\(=x^2\left(x-1\right)-2x\left(x-1\right)+\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-2x+1\right)\)

\(=\left(x-1\right)^3\)

c) Ta có: \(1-9x+27x^2-27x^3\)

\(=1-3x-6x+18x^2+9x^2-27x^3\)

\(=\left(1-3x\right)-6x\left(1-3x\right)+9x^2\left(1-3x\right)\)

\(=\left(1-3x\right)\left(1-6x+9x^2\right)\)

\(=\left(1-3x\right)^3\)

d) Ta có: \(x^3+\frac{3}{2}x^2+\frac{3}{4}x+\frac{1}{8}\)

\(=x^3+3\cdot x^2\cdot\frac{1}{2}+3\cdot x\cdot\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3\)

\(=\left(x+\frac{1}{2}\right)^3\)

e) Ta có: \(27x^3-54x^2y+36xy^2-8y^3\)

\(=\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot2y+3\cdot3x\cdot\left(2y\right)^2-\left(2y\right)^3\)

\(=\left(3x-2y\right)^3\)

18 tháng 6 2016

a) = (x + 3)2 - y2 = (x + 3 - y)(x + 3 + y)

b) = x2(x - 3) -4(x - 3) = (x - 3)(x2 - 4) = (x - 3)(x - 2)(x + 2)

c) = 3x(x - y) - 5(x - y) = (x - y)(3x - y)

d) Nhầm đề. tui sửa lại x3 + y3 + 2x2 - 2xy + 2y2

= x3 + y3 + 2(x2 - xy + y2) = (x + y)(x2 - xy + y2) + 2(x2 - xy + y2) = (x2 - xy + y2)(x + y + 2)

e) = x4 - x3 - x3 + x2 - x2 + x + x - 1 = x3(x - 1) - x2(x - 1) - x(x - 1) + x - 1 = (x - 1)(x3 - x2 - x + 1) = (x - 1)(x - 1)(x2 - 1) = (x - 1)3(x + 1)

f) = x3 - 3x2 - x2 + 3x + 9x - 27 = x2(x - 3) - x(x - 3) + 9(x - 3) = (x-3)(x2 - x + 9)

g) chắc là 3xyz 

= x2y + xy2 + y2z + yz2 + x2z + xz2 + 3xyz = x2y + xy2 + xyz + y2z + yz2 + xyz + x2z + xz2 + xyz = (x + y + z)(xy + yz + xz)

h) = 23 -(3x)3 = (2 - 3x)(4 + 6x + 9x2)

i) = (x + y - x + y)(x + y + x - y) = 2y*2x = 4xy

k) = (x3 - y3)(x3 + y3) = (x - y)(x2 + xy +y2)(x + y)(x2 - xy +y2).

14 tháng 9 2015

12x3+4x2-27x-9=(12x3+4x2)-(27x-9)=4x2(3x+1)-32(3x+1)=(3x+1)(4x2-32)

cau b mjk chua ra 

bn thiếu rồi 

  • Trịnh Hoàng Đông Giang
2 tháng 8 2020

chữ mình nó không được đẹp cho lắm, thông cảm

2 tháng 8 2020
https://i.imgur.com/tmaToim.png
30 tháng 7 2020

a) \(4x^2-12x+9\)

\(=\left(2x\right)^2-2.2.3+3^2\)

\(=\left(2x-3\right)^2\)

b) \(4x^2+4x+1\)

\(=\left(2x\right)^2+2.2x.1+1^2\)

\(=\left(2x+1\right)^2\)

c) \(1+12x+36x^2\)

\(=1^2+2.6x+\left(6x\right)^2\)

\(=\left(1+6x\right)^2\)

d) \(9x^2-24xy+16y^2\)

\(=\left(3x\right)^2-2.3x.4y+\left(4y\right)^2\)

\(=\left(3x-4y\right)^2\)

e) Viết = công thức trực quan hộ mình

f) \(-x^2+10x-25\)

\(=-\left(x^2-10x+25\right)\)

\(=-\left(x^2-2.5x+5^2\right)\)

\(=-\left(x-5\right)^2\)

20 tháng 8 2020

a) \(x^2-xz-9y^2+3yz\)

\(=\left(x^2-9y^2\right)-\left(xz-3yz\right)\)

\(=\left[x^2-\left(3y\right)^2\right]-z\left(x-3y\right)\)

\(=\left(x-3y\right)\left(x+3y\right)-z\left(x-3y\right)\)

\(=\left(x-3y\right)\left(x+3y-z\right)\)

b) \(x^3-x^2-5x+125\)

\(=\left(x^3+125\right)-\left(x^2+5x\right)\)

\(=\left(x^3+5^3\right)-x\left(x+5\right)\)

\(=\left(x+5\right)\left(x^2-5x+5^2\right)-x\left(x+5\right)\)

\(=\left(x+5\right)\left(x^2-5x+5^2-x\right)\)

\(=\left(x+5\right)\left(x^2-6x+25\right)\)

c) \(x^3+2x^2-6x-27\)

\(=\left(x^3-27\right)-\left(2x^2-6x\right)\)

\(=\left(x^3-3^3\right)-2x\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2+3x+3^2\right)-2x\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2+3x+3^2-2x\right)\)

\(=\left(x-3\right)\left(x^2+x+9\right)\)

e) \(4x^4+4x^3-x^2-x\)

\(=4x^3\left(x+1\right)-x\left(x+1\right)\)

\(=\left(x+1\right)\left(4x^3-x\right)\)

f) \(x^6-x^4-9x^3+9x^2\)

\(=x^4\left(x^2-1\right)-9x^2\left(x-1\right)\)

\(=x^4\left(x-1\right)\left(x+1\right)-9x^2\left(x-1\right)\)

\(=\left(x-1\right)\left[x^4\left(x+1\right)-9x^2\right]\)

\(=\left(x-1\right)\left(x^5+x^4-9x^2\right)\)

Bài 4:

a) Ta có: \(a^4+a^2+1\)

\(=a^4+2a^2+1-a^2\)

\(=\left(a^2+1\right)^2-a^2\)

\(=\left(a^2-a+1\right)\left(a^2+a+1\right)\)

b) Ta có: \(a^4+a^2-2\)

\(=a^4+2a^2-a^2-2\)

\(=a^2\left(a^2+2\right)-\left(a^2+2\right)\)

\(=\left(a^2+2\right)\left(a^2-1\right)\)

\(=\left(a^2+2\right)\left(a-1\right)\left(a+1\right)\)

c) Ta có: \(x^4+4x^2-5\)

\(=x^4+5x^2-x^2-5\)

\(=x^2\left(x^2+5\right)-\left(x^2+5\right)\)

\(=\left(x^2+5\right)\left(x^2-1\right)\)

\(=\left(x^2+5\right)\left(x-1\right)\left(x+1\right)\)

d) Ta có: \(x^3-19x-30\)

\(=x^3-25x+6x-30\)

\(=x\left(x^2-25\right)+6\left(x-5\right)\)

\(=x\left(x-5\right)\left(x+5\right)+6\left(x-5\right)\)

\(=\left(x-5\right)\left(x^2+5x\right)+6\left(x-5\right)\)

\(=\left(x-5\right)\left(x^2+5x+6\right)\)

\(=\left(x-5\right)\left(x^2+2x+3x+6\right)\)

\(=\left(x-5\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)

\(=\left(x-5\right)\left(x+2\right)\left(x+3\right)\)

e) Ta có: \(x^3-7x-6\)

\(=x^3-4x-3x-6\)

\(=x\left(x^2-4\right)-3\left(x+2\right)\)

\(=x\left(x-2\right)\left(x+2\right)-3\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2-2x\right)-3\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2-2x-3\right)\)

\(=\left(x+2\right)\left(x^2-3x+x-3\right)\)

\(=\left(x+2\right)\left[x\left(x-3\right)+\left(x-3\right)\right]\)

\(=\left(x+2\right)\left(x-3\right)\left(x+1\right)\)

f) Ta có: \(x^3-5x^2-14x\)

\(=x\left(x^2-5x-14\right)\)

\(=x\left(x^2-7x+2x-14\right)\)

\(=x\left[x\left(x-7\right)+2\left(x-7\right)\right]\)

\(=x\left(x-7\right)\left(x+2\right)\)