Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,49x2-1=0
\(\Leftrightarrow\left(7x\right)^2-1^2=0\)\(\Leftrightarrow\left(7x-1\right)\left(7x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}7x-1=0\\7x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}7x=1\\7x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{7}\\x=\dfrac{-1}{7}\end{matrix}\right.\)
b,(2x-1)2-(4x+1)(x-3)= -3
\(\Leftrightarrow\left[\left(2x\right)^2-2x+1\right]-\left(4x^2-12x+x-3\right)=0\)
\(\Leftrightarrow4x^2-2x+1-4x^2+12x-x+3=0\)
\(\Leftrightarrow9x+4=0\Leftrightarrow9x=-4\Leftrightarrow x=\dfrac{-4}{9}\)
\(a)\left(2x+5\right)\left(2x-7\right)-\left(-4x-3\right)^2=16\\ \Leftrightarrow4x^2-14x+10x-35-\left(16x^2+24x-9\right)=16\\ \Leftrightarrow-12x^2-28x-44=16\\ \Leftrightarrow-12x^2-28x-60=0\\ \Leftrightarrow3x^2+7x+15=0\\ \Delta=b^2-4ac=7^2-4.3.15=-131< 0\)
Vậy phương trình vô nghiệm
\( b)(8x^2 + 3)(8x^2 - 3) - (8x^2 - 1)^2 = 22\)
\(\Leftrightarrow64x^4-9-\left(64x^4-16x^2+1\right)=22\\ \Leftrightarrow-10+16x^2=22\\ \Leftrightarrow16x^2=32\\ \Leftrightarrow x^2=2\\ \Leftrightarrow x=\pm\sqrt{2}\)
Vậy \(x=\sqrt{2},x=-\sqrt{2}\)
\(c)49x^2+14x+1=0\\ \Leftrightarrow\left(7x+1\right)^2=0\\ \Leftrightarrow7x+1=0\\ \Leftrightarrow7x=-1\)
\(\Leftrightarrow\)\(x=-\dfrac{1}{7}\)
Vậy \(x=-\dfrac{1}{7}\)
\(\Leftrightarrow\)\(x=-\dfrac{1}{7}\)
a. \(\left(3x-5\right)^2-\left(x+1\right)^2=0\Leftrightarrow\left(3x-5+x+1\right)\left(3x-5-x-1\right)=0\Leftrightarrow\left(4x-4\right)\left(2x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}4x-4=0\\2x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy ...
b. \(\left(5x-4\right)^2-49x^2=0\Leftrightarrow\left(5x-4\right)^2-\left(7x\right)^2=0\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}-2x-4=0\\12x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy ...
c. \(4x^3-36x=0\Leftrightarrow4x\left(x^2-9\right)=0\Leftrightarrow4x\left(x-3\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}4x=0\\x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
Vậy ...
d. \(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\Leftrightarrow\left(2x+3\right)\left(x-1\right)-\left(2x-3\right)\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(2x+3-2x+3\right)=0\Leftrightarrow6\left(x-1\right)=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy ...
no nooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooô
câu này biết mới vừa trao đổi bài với thầy xong nhưng ko biết đúng ko
a ) 2x ( x - 5 ) - x ( 3 + 2x ) = 26
2x2 - 10x - 3x - 2x2 = 26
- 13x = 26
x = 26 : ( -13 )
x = -2
b) 49x2 - 81 = 0
( 7x - 9 )( 7x + 9 ) = 0
Th1 :
7x - 9 = 0
7x = 9
x = \(\frac{9}{7}\)
Th2
7x + 9 = 0
7x = -9
x = \(-\frac{9}{7}\)
Vay x = \(\frac{9}{7}\) hoac x = \(-\frac{9}{7}\)
a) Ta có: \(\left(2x+3\right)^2-\left(5+x\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(2x+3+5+x\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(3x+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\3x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-3\\3x=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-3}{2}\\x=\frac{-8}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{-3}{2};\frac{-8}{3}\right\}\)
b) Ta có: \(\left(2x+5\right)^2-\left(2x-5\right)^2=6x+8\)
\(\Leftrightarrow\left(2x+5+2x-5\right)\left(2x+5-2x+5\right)-6x-8=0\)
\(\Leftrightarrow40x-6x-8=0\)
\(\Leftrightarrow34x=8\)
\(\Leftrightarrow x=\frac{8}{34}=\frac{4}{17}\)
Vậy: \(x=\frac{4}{17}\)
c) Ta có: \(\left(4x+3\right)^2=4\left(x-1\right)^2\)
\(\Leftrightarrow16x^2+24x+9=4\left(x^2-2x+1\right)\)
\(\Leftrightarrow16x^2+24x+9-4x^2+8x-4=0\)
\(\Leftrightarrow12x^2+32x+5=0\)
\(\Leftrightarrow12x^2+2x+30x+5=0\)
\(\Leftrightarrow2x\left(6x+1\right)+5\left(6x+1\right)=0\)
\(\Leftrightarrow\left(6x+1\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}6x+1=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}6x=-1\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{6}\\x=\frac{-5}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{-1}{6};\frac{-5}{2}\right\}\)
d) Ta có: \(\left(7x-1\right)\left(3x-2\right)-49x^2+14x=1\)
\(\Leftrightarrow\left(7x-1\right)\left(3x-2\right)-\left(49x^2-14x+1\right)=0\)
\(\Leftrightarrow\left(7x-1\right)\left(3x-2\right)-\left(7x-1\right)^2=0\)
\(\Leftrightarrow\left(7x-1\right)\left[3x-2-\left(7x-1\right)\right]=0\)
\(\Leftrightarrow\left(7x-1\right)\left(3x-2-7x+1\right)=0\)
\(\Leftrightarrow\left(7x-1\right)\left(-4x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}7x-1=0\\-4x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}7x=1\\-4x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{7}\\x=\frac{-1}{4}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{1}{7};\frac{-1}{4}\right\}\)
Bài 1 :
a) (3+x)(x2-9)-(x-3)(x2+3x+9) = ( x-3)(x+3)2-(x-3)(x2+3x+9)
= (x-3) ( x2+6x+9 - (x2+3x+9)) = (x-3) . 3x = 3x(x-3)
Các câu còn lại mình sẽ gửi bạn sau nếu có thời gian
Nhấn đúng để ủng hộ mình :))
a/ Ta có : \(49.x^2-4=0\)
\(\Rightarrow49x^2=4\)
\(\Rightarrow x^2=\frac{4}{49}\Rightarrow\orbr{\begin{cases}x=\frac{-2}{7}\\x=\frac{2}{7}\end{cases}}\)
b/ \(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=11\)
\(\left(x+3\right)\left(x+3\right)-\left(x+2\right)\left(x-2\right)=11\)
\(\Rightarrow\left(x^2+2.3.x+3^2\right)-\left(x^2-2^2\right)=11\)
\(\Rightarrow x^2+6x+9-x^2+4=11\)
\(\Rightarrow6x+13=11\)
\(\Rightarrow6x=11-13\)
\(\Rightarrow x=\frac{-2}{6}=\frac{-1}{3}\)
c/ \(\left(2x+1\right)^2-\left(x-3\right)^2-3\left(x+5\right)\left(x-5\right)=5\)
\(\Rightarrow\left(2x+1\right)\left(2x+1\right)-\left(x-3\right)\left(x-3\right)-3\left[\left(x+5\right)\left(x-5\right)\right]=5\)
\(\Rightarrow\left(4x^2+2.2x+1\right)-\left(x^2-2.3x+9\right)-3\left(x^2-25\right)\)\(=5\)
\(\Rightarrow\left(4x^2+4x+1\right)-\left(x^2-6x+9\right)-\left(3x^2-75\right)=5\)
\(\Rightarrow4x^2+4x+1-x^2+6x-9-3x^2+75=5\)
\(\Rightarrow\left(4x^2-x^2-3x^2\right)+\left(4x+6x\right)+\left(1-9+75\right)=5\)
\(\Rightarrow10x+67=5\)
\(\Rightarrow10x=5-67=-62\)
\(\Rightarrow x=\frac{-62}{10}=\frac{-31}{5}\)
d/ \(\left(3x+1\right)\left(3x-1\right)=8\)
\(\Rightarrow9x^2-1=8\)
\(\Rightarrow9x^2=8+1=9\)
\(\Rightarrow x^2=\frac{9}{9}=1\Leftrightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)
Ai đó bấm hộ mình cái nút đúng đi!
Ta có : 49x2 - 4 = 0
=> 49x2 = 4
=> x2 = 196
=> x2 = 142 ; (-14)2
=> x = 14 ; -14
\(9,\left(2x-5\right)^2-\left(x+1\right)^2=0\\ \Leftrightarrow\left(2x-5-x-1\right)\left(2x-5+x+1\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(3x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\3x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\dfrac{4}{3}\end{matrix}\right.\)
Vậy \(S=\left\{6;\dfrac{4}{3}\right\}\)
\(10,\left(x+3\right)^2-x^2=45\)
\(\Leftrightarrow x^2+6x+9-x^2-45=0\\ \Leftrightarrow6x=36\\ \Leftrightarrow x=6\)
Vậy \(S=\left\{6\right\}\)
\(11,\left(5x-4\right)^2-49x^2=0\\ \Leftrightarrow\left(5x-4\right)^2-\left(7x\right)^2=0\\ \Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\\ \Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x-4=0\\12x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(S=\left\{-2;\dfrac{1}{3}\right\}\)
\(12,16\left(x-1\right)^2-25=0\\ \Leftrightarrow4^2\left(x-1\right)^2-5^2=0\\ \Leftrightarrow\left[4\left(x-1\right)\right]^2-5^2=0\\ \Leftrightarrow\left(4x-4\right)^2-5^2=0\\ \Leftrightarrow\left(4x-4-5\right)\left(4x-4+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-9=0\\4x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{1}{4};\dfrac{9}{4}\right\}\)
\(\dfrac{1}{2}x^3-49x=0\)
\(\dfrac{1}{2}x^2.x-49x=0\)
\(x.\left(\dfrac{1}{2}x^2-49\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\\dfrac{1}{2}x^2-49=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\\dfrac{1}{2}x^2=49\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x^2=98\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=7\sqrt{2}\end{matrix}\right.\)
Vậy \(x\in\left\{0,7\sqrt{2}\right\}\)