Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 ... 1/1 x 1 + 1/2 x 2 + 1/3 x 3 + ... + 1/100 x 100
1 ... 1+1/2x2+1/3x3+...+1/100x100
1=1/1x1+1/2x2+1/3x3+...+1/100x100
Chứng minh:
C=\(\dfrac{1}{2x2}\)+\(\dfrac{1}{3x3}\)+\(\dfrac{1}{4x4}\)+.....+\(\dfrac{1}{100x100}\)<1
\(C=\dfrac{1}{2\times2}+\dfrac{1}{3\times3}+\dfrac{1}{4\times4}+...+\dfrac{1}{100\times100}\\ C< \dfrac{1}{1\times2}+\dfrac{1}{2\times3}+...+\dfrac{1}{99\times100}\\ C< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ C< 1-\dfrac{1}{100}=\dfrac{99}{100}< 1\)
\(E=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{49.49}\)
Ta có \(\frac{1}{2.2}>\frac{1}{2.3}\)
\(\frac{1}{3.3}>\frac{1}{3.4}\)
...
\(\frac{1}{49.49}>\frac{1}{49.50}\)
=> \(E=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{49.49}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}=\frac{1}{2}-\frac{1}{50}=\frac{24}{50}=\frac{12}{25}=F\)
=> E > F
2870 ĐÚNG NHÉ BẠN !
\(C=1x\left(2-1\right)+2x\left(3-1\right)+3x\left(4-1\right)+...+20x\left(21-1\right)\)
\(=1x2-1+2x3-2+3x4-3+...+20x21-20\)
\(=\left(1x2+2x3+3x4+...+20x21\right)-\left(1+2+3+...+20\right)\)
\(A=1x2+2x3+3x4+...+21x21\)
\(3xA=1x2x3+2x3x3+3x4x3+...+20x21x3\)
\(3xA=1x2x3+2x3x\left(4-1\right)+3x4x\left(5-2\right)+...+20x21x\left(22-19\right)\)
\(3xA=1x2x3-1x2x3+2x3x4-2x3x4+3x4x5-...-19x20x21+20x21x22\)
\(3xA=20x21x22\Rightarrow A=20x7x22=3080\)
\(B=1+2+3+...+20=\frac{20x\left(1+20\right)}{2}=210\)
\(C=A-B=3080-210=2870\)