\(|x-1|\)\(\le\)3x-5

BẠN NÀO BIẾT GIÚP MÌNH VS NHÁ,M...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 4 2020

\(\Leftrightarrow2\left|x-1\right|\le3x-6\)

- Với \(x< 2\Rightarrow3x-6< 0\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT vô nghiệm

- Với \(x\ge2\Rightarrow x-1>0\Rightarrow\left|x-1\right|=x-1\) BPT trở thành:

\(2\left(x-1\right)\le3x-6\Leftrightarrow x\ge4\)

Vậy nghiệm của BPT là \(x\ge4\)

10 tháng 4 2020

cảm ơn nhiều nha Lâm

9 tháng 2 2020

A = \(\frac{3x}{2}+\frac{2}{x-1}=3.\frac{x-1}{2}+\frac{2}{x-1}+\frac{3}{2}\)\(\ge2\sqrt{3}+\frac{3}{2}\)

\(\Rightarrow\)min A = \(2\sqrt{3}+\frac{3}{2}\Leftrightarrow x=\frac{2}{\sqrt{3}}+1\)(thỏa mãn)

B = \(x+\frac{3}{3x-1}=\frac{1}{3}\left(3x-1+\frac{9}{3x-1}+1\right)\)\(\ge\frac{1}{3}\left(2\sqrt{9}+1\right)=\frac{7}{3}\)

\(\Rightarrow\)min B = \(\frac{7}{3}\Leftrightarrow x=\frac{4}{3}\)

9 tháng 2 2020

\(A\) \(=\) \(3x^2\left(8-x^2\right)\le3\frac{\left(x^2+8-x^2\right)^2}{4}=48\)

\(\Rightarrow\) maxA = 48 \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)(thỏa mãn)

\(B=\) \(4x\left(8-5x\right)\)\(=\frac{4}{5}.5x\left(8-5x\right)\le\frac{4}{5}.\frac{\left(5x+8-5x\right)^2}{4}=\frac{64}{5}\)

\(\Rightarrow\)max B = \(\frac{64}{5}\Leftrightarrow x=\frac{4}{5}\)(thỏa mãn)

13 tháng 3 2019

từ câu 1 đến câu 4 bạn có thẻ dùng máy tính casio f(x)570 VN giải nhé .bạn bấm MODE xuống 1 1

1)vô nghiệm

2)vô nghiệm

3)luôn đúng

4)\(\frac{-1-\sqrt{41}}{4}\le x\le\frac{-1+\sqrt{41}}{4}\)

13 tháng 3 2019

5) \(\left\{{}\begin{matrix}-2x^2+5x-2\le x-3\\-2x^2+5x-2\ge-x+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\le\frac{2-\sqrt{6}}{2}\\x\ge\frac{2+\sqrt{6}}{2}\end{matrix}\right.\\vonghiem\end{matrix}\right.\) vậy bpt vô nghiệm

20 tháng 9 2020

Ta có \(x^4+x^2+1=\left(x^2+1\right)^2-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)>0,\forall x\)

Mặt khác: \(x^2-3x+1=2\left(x^2-x+1\right)-\left(x^2+x+1\right)\)

Đặt \(y=\sqrt{\frac{x^2-x+1}{x^2+x+1}}\)(có thể viết điều kiện \(y\ge0\)hoặc chính xác hơn là \(\frac{\sqrt{3}}{3}\le y\le\sqrt{3}\)), ta được:

\(2y^2-1=\frac{-\sqrt{3}}{3}y=0\Leftrightarrow6y^2+\sqrt{3y}-3=0\), ta được \(y=\frac{\sqrt{3}}{3}\)(loại \(y=\frac{-\sqrt{3}}{2}\))

=> Phương trình có nghiệm là x=1

20 tháng 9 2020

cảm ơn bạn rất nhiều   

 bạn có thể giúp mình hiểu dõ hơn dòng thứ 3, 4 ko ạ

28 tháng 9 2016

Ix2-xI+Ix-1I khác 0 .

Nhưng giá trị tuyệt đối luôn lớn hơn 0 . Nên biểu thức trên luôn lớn hơn 0

27 tháng 9 2016

ai giúp đi ạ

 

NV
7 tháng 3 2020

1.

a/ ĐKXĐ: \(-1\le x\le5\)

\(\Leftrightarrow\sqrt{x+3}\le\sqrt{5-x}+\sqrt{x+1}\)

\(\Leftrightarrow x+3\le6+2\sqrt{\left(5-x\right)\left(x+1\right)}\)

\(\Leftrightarrow x-3\le2\sqrt{-x^2+4x+5}\)

- Với \(x< 3\Rightarrow\left\{{}\begin{matrix}VT< 0\\VP\ge0\end{matrix}\right.\) BPT luôn đúng

- Với \(x\ge3\) cả 2 vế ko âm, bình phương:

\(x^2-6x+9\le-4x^2+16x+20\)

\(\Leftrightarrow5x^2-22x-11\le0\) \(\Rightarrow\frac{11-4\sqrt{11}}{5}\le x\le\frac{11+4\sqrt{11}}{5}\)

\(\Rightarrow3\le x\le\frac{11+4\sqrt{11}}{5}\)

Vậy nghiệm của BPT đã cho là \(-1\le x\le\frac{11+4\sqrt{11}}{5}\)

NV
7 tháng 3 2020

1b/

Đặt \(\sqrt{2x^2+8x+12}=t\ge2\)

\(\Rightarrow x^2+4x=\frac{t^2}{2}-6\)

BPT trở thành:

\(\frac{t^2}{2}-12\ge t\Leftrightarrow t^2-2t-24\ge0\) \(\Rightarrow\left[{}\begin{matrix}t\le-4\left(l\right)\\t\ge6\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x^2+8x+12}\ge6\)

\(\Leftrightarrow2x^2+8x-24\ge0\Rightarrow\left[{}\begin{matrix}x\le-6\\x\ge2\end{matrix}\right.\)