Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(A=2+4+8+...+2048\)
\(A=2+2^2+...+2^{11}\)
\(2A=2^2+2^3+...+2^{12}\)
\(2A-A=\left(2^2+2^3+...+2^{12}\right)-\left(2+2^2+...+2^{11}\right)\)
\(A=2^{12}-2\)
a) 2+4+8+16+32+64+128+512+1024+2048
b thì minh cha ra. Mình sẽ cố làm ra b mong ban thong cam va bạn nho k đung cho minh nha
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}+\frac{1}{512}\)
\(A\cdot2=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\)
\(A\cdot2-A=1-\frac{1}{512}\)
\(A=\frac{511}{512}\)
Ta có :1/2+1/4=1-1/4=3/4
1/2+1/4+1/8=1-1/8=7/8
Tương tự
Vậy 1/2+1/4+1/8+1/16+....+1/256+1/512
=1-1/512
=511/512
Cho \(a=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+....+\frac{1}{512}\)
Nên \(2a=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\)
\(2a-a=a=1-\frac{1}{512}=\frac{511}{512}\)
Vậy \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}=\frac{511}{512}\)
Bài này dễ.
Giải:
Đặt tổng trên là A, ta có:
\(2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...+\frac{1}{256}+\frac{1}{512}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)
\(A=1-\frac{1}{1024}\)
\(A=\frac{1023}{1024}\)
Chúc bạn học tốt.
Đặt A=1/2+1/2+1/8+1/16+.....+1/256+1/512
2A=1+1/2+1/4+1/8+.....+1/128+1/256
2A-A=1-1/512
A=511/512
1/2 + 1/4 + 1/8 + 1/16 + ... + 1/256 + 1/512
= 256/512 + 128/512 + 64/512 + ... + 2/512 + 1/512
= 256 + 128 + 64 + .. + 2 + 1 / 512
= ???????
s=1/2+1/4+1/8+1/16+.....+1/256+1/512
sx2=(1/2+1/4+1/8+1/16+....+1/256+1/512)x2
sx2=1+1/2+1/4+1/8+......+1/126+1/256
sx2-s=(1+1/2+1/4+1/8+......+1/256)-(1/2+1/4+1/8+1/16++.....+1/256+1/512)
1+1/2+1/4+1/8+......+1/256-1/2-1/4-1/8-1/16-.....1/256-1/512
=1-1/512=511/512
Vậy dãy số đó là:
1/2 + 1/4 + 1/8 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512 =
256/512 + 128/512 + 64/512 + 32/512 + 16/512 + 8/512 + 4/512 + 2/512 + 1/512 511/512
Đáp số: 511/512
1 + 2 + 4 + 8 + 16 + ... + 512
Đặt N = 1 + 2 + 4 + 8 + 16 + ... + 512 (:v)
Ta có :
N = 1 + 2 + 4 + 8 + 16 + ... + 512
N = 20 + 21 + 22 + 23 + 24 + ... + 29
2N = 2 ( 20 + 21 + 22 + 23 + 24 + ... + 29 )
2N = 21 + 22 + 23 + 24 + 25 + ... + 210
2N - N = ( 21 + 22 + 23 + 24 + 25 + ... + 210 ) - ( 20 + 21 + 22 + 23 + 24 + ... + 29 )
N = 210 - 1
N = 1024 - 1
N = 1023
Vậy N = 1023
gọi A=1+2+4+8+16+...+512
=2^0+2+2^2+2^3+2^4+...+2^9
2A=2+2^2+2^3+2^4+2^5+...+2^10
2A-Ahay A=2^10-2^0
=1024-1
=1023