Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 1 + 2 + 3 + ...+ x = x(x-1)/2 = 500500
x(x-1) = 1001000
x = 1001
\(1+2+3+...+x=500500\)
\(\Rightarrow\frac{x\left(x+1\right)}{2}=500500\)
\(x\left(x+1\right)=1001000=1000.1001\)
\(\Rightarrow x=1000\)
1+2+3+...+x=500500
=> (x+1).x : 2 = 500500
=> (x+1).x = 500500 . 2
=> (x+1).x = 1001000
Mà : 1001000 = 1001.1000
=> x = 1000
biểu thức trên có x số hạng
-> 1 + 2+ 3+.....+x = 500500
= ( x+1 ) * x :2 =500500
= (x+1) * x =1001000
Ta thấy đây là tích của 2 số tự nhiên liên tiếp . MÀ có : 1000 * 1001 = 1001000
->x =1000
ta có:
1 + 2 + 3 +...+ x = 500500
=> (x + 1)x : 2 = 500500
=> (x + 1)x = 500500.2 = 1001000
=> (x + 1)x = 1000.1001
=> x = 1000
\(1+2+3+....+x=500500\)
\(\Leftrightarrow\left(1+x\right).x\div2=500500\)
\(\Leftrightarrow\left(1+x\right).x=500500.2\)
\(\Leftrightarrow\left(1+x\right).x=1001000\)
\(\Leftrightarrow\left(1+x\right).x=1001.1000\)
\(\Leftrightarrow x=1000\)
Vậy x = 1000
x>0
ta có 1+2+3+...+x= (x+1).x /2
Nên (x+1)x/2=500500
(x+1)x =500500.2=1001000
x2+x - 1001000=0
\(\orbr{\begin{cases}x=1000\\x=-1001\end{cases}}\)
Vậy x=1000
\(1+2+3+4+..+x=500500\Rightarrow\frac{x.\left(x+1\right)}{2}=500500\Rightarrow x.\left(x+1\right)=1001000=1000.1001\)
(do x và x+1 là 2 số nguyên liên tiếp)
=>x=1000
\(1+2+3+.....+x=500500\)
\(=>6+x=500500\)
\(=>x=500500-6\)
\(=>x=500494\)
(1+x) .x=500500 : 2
(1+x).x=10001001
x.(1+x)= 1000*1001
suy ra x = 1000
vậy x= 1000
1+2+3+4+...+x=500500
\(\frac{\left(x+1\right).x}{2}=500500\)
\(\left(x+1\right).x=1001000\)
\(1001.1000=100100\)
Vậy x = 1000
1+2+3+4+...+X = 500500
( X + 1 ) x X : 2 = 500500
( X + 1) x X = 500500 x 2
( X + 1) x X = 1001000
1000 x ( 1000+ 1) = 1001000
Vậy x = 1000
500500*2=1001000 mà ta thấy 1001*1000=1001000=>x=1000
\(1+2+3+...+x=500500\)
\(\frac{\left(1+x\right)\times x}{2}=500500\)
\(\left(1+x\right)\times x=1001000\)
Vì \(1+x\)và \(x\)là hai số liền kề nhau nên \(1001000\) là tích của hai số liền nhau và số nhỏ hơn sẽ là \(x\).
Mà \(1001000=1000\times1001\) vậy \(x=1000\)