Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
12.194+6.437.2+3.369.4
=12.194+(6.2).437+(3.4).369
=12.194+12. 437+12.369
=12.(194+437+369)
=12.1000
=12000
125.(-61).(-2)3.(-1)2n(n thuộc N*)
= 125 . (-61).(-8).1
= [ 125. (-8) ] . (-61.1)
= - 1000 . -61
= 61 000
a) \(4\left(\frac{1}{2}x-\frac{1}{3}\right)^2+5=\frac{61}{9}\)
=> \(4\left(\frac{1}{2}x-\frac{1}{3}\right)^2=\frac{61}{9}-5\)
=> \(4\left(\frac{1}{2}x-\frac{1}{3}\right)^2=\frac{16}{9}\)
=> \(\left(\frac{1}{2}x-\frac{1}{3}\right)^2=\frac{16}{9}:4\)
=> \(\left(\frac{1}{2}x-\frac{1}{3}\right)^2=\frac{16}{9\cdot4}=\frac{16}{36}=\frac{4}{9}\)
=> \(\frac{1}{2}x-\frac{1}{3}=\pm\frac{2}{3}\)
Trường hợp 1 : \(\frac{1}{2}x-\frac{1}{3}=\frac{2}{3}\)
=> \(\frac{1}{2}x=1\)
=> \(x=1:\frac{1}{2}=2\)
Trường hợp 2 : \(\frac{1}{2}x-\frac{1}{3}=-\frac{2}{3}\)
=> \(\frac{1}{2}x=-\frac{2}{3}+\frac{1}{3}=-\frac{1}{3}\)
=> \(x=\left(-\frac{1}{3}\right):\frac{1}{2}=\left(-\frac{1}{3}\right)\cdot2=-\frac{2}{3}\)
b) \(9\left(2x-\frac{1}{3}\right)^3-1=-\frac{2}{3}\)
=> \(9\left(2x-\frac{1}{3}\right)^3=-\frac{2}{3}+1=\frac{1}{3}\)
=> \(\left(2x-\frac{1}{3}\right)^3=\frac{1}{3}:9\)
=> \(\left(2x-\frac{1}{3}\right)^3=\frac{1}{3\cdot9}=\frac{1}{27}\)
=> \(2x-\frac{1}{3}=\frac{1}{3}\)
=> \(2x=\frac{2}{3}\)
=> \(x=\frac{2}{3}:2=\frac{1}{3}\)
Bài cuối tương tự
\(B=\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+....+\frac{61}{\left(30.31\right)^2}\)
\(=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{61}{30^2.31^2}\)
\(=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+...+\frac{31^2-30^2}{30^2.31^2}\)
\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+....+\frac{1}{30^2}-\frac{1}{30^2}\)
\(=1-\frac{1}{31^2}=1-\frac{1}{961}=\frac{960}{961}\)
3P = 3 + 3^2 + 3^3 + 3^4 +...+ 3^62 + 3^63
=> 3P - P = (3 + 3^2 + 3^3 + 3^4 +...+ 3^62 + 3^63) - (1 + 3 + 3^2 + 3^3 + ... + 3^61 + 3^62)
=> 2P = -1 +3^63
=> P = -1 + 3^63/2
Có : 3^63 = (3^4)15 . 3^3 = 81^15 . 27 = ....1 . 27 = ....7
=> 3^63 -1 = ....6
Từ đó thì bạn cứ suy ra mấy bước nhỏ nữa là xong thôi
Đặt \(A=\dfrac{1}{3}+\dfrac{1}{31}+\dfrac{1}{35}+\dfrac{1}{37}+\dfrac{1}{47}+\dfrac{1}{53}+\dfrac{1}{61}\)
\(A< \left(\dfrac{1}{30}+\dfrac{1}{30}+\dfrac{1}{30}\right)+\left(\dfrac{1}{60}+\dfrac{1}{60}+\dfrac{1}{60}+\dfrac{1}{60}\right)\)
\(A< \dfrac{1}{3}+\dfrac{3}{30}+\dfrac{4}{60}\)
\(A< \dfrac{10}{30}+\dfrac{3}{30}+\dfrac{2}{30}\)
\(A< \dfrac{15}{30}=\dfrac{1}{2}\)
\(\Rightarrow A< \dfrac{1}{2}\) ( đpcm ).
3906