K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2016

\(\frac{1+2+3+...+100}{1.2.3...100}\)

Đặt: A = 1+2+3+...+100

Số số hạng của A là: (100-1) : 1 + 1 = 100 (số)

Tổng A là: (100+1).100:2 = 5050

Đặt B = 1.2.3....100 = 100!

=> \(\frac{1+2+3+...+100}{1.2.3...100}=\frac{5050}{100!}\)

27 tháng 10 2016

Đặt \(A=1+2+3+...+99+100\)

\(\Rightarrow A=100+99+98+...+2+1\)

\(\Rightarrow A=\left(1+100\right)+\left(2+99\right)+\left(3+98\right)+...+\left(100+1\right)\) ( 50 cặp số )

\(\Rightarrow A=101+101+101+...+101\) ( 50 số )

\(\Rightarrow A=101.50\)

\(\Rightarrow A=5050\)

Vậy A = 5050

 

 

8 tháng 2 2018

ai biết trả lời nhanh giúp mình nhé

8 tháng 2 2018

\(B=\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+.......+\dfrac{99}{2^{99}}+\dfrac{100}{2^{100}}\)

\(\Leftrightarrow2B=1+\dfrac{1}{2^2}+\dfrac{2}{2^3}+\dfrac{3}{2^4}+........+\dfrac{98}{2^{99}}+\dfrac{99}{2^{100}}\)

\(\Leftrightarrow2B-B=\left(1+\dfrac{1}{2^2}+\dfrac{2}{2^3}+........+\dfrac{99}{2^{100}}\right)-\left(\dfrac{1}{2}+\dfrac{2}{2^2}+......+\dfrac{100}{2^{100}}\right)\)

\(\Leftrightarrow B=\dfrac{1}{2}+\dfrac{1}{2^2}+..........+\dfrac{1}{2^{100}}-\dfrac{100}{2^{100}}\)

Đặt :

\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{100}}\)

\(\Leftrightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+........+\dfrac{1}{2^{99}}\)

\(\Leftrightarrow2A-A=\left(1+\dfrac{1}{2}+......+\dfrac{1}{2^{99}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{100}}\right)\)

\(\Leftrightarrow A=1-\dfrac{1}{2^{100}}\)

\(\Leftrightarrow B=1-\dfrac{1}{2^{100}}-\dfrac{100}{2^{100}}\)

\(\Leftrightarrow B=\dfrac{2^{100}-101}{2^{100}}\)

9 tháng 2 2018

thank you