![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a.
\(\left(\frac{1}{2}-1\right)\times\left(\frac{1}{3}-1\right)\times\left(\frac{1}{4}-1\right)\times...\times\left(\frac{1}{2016}-1\right)\left(\frac{1}{2017}-1\right)\)
\(=\left(-\frac{1}{2}\right)\times\left(-\frac{2}{3}\right)\times\left(-\frac{3}{4}\right)\times...\times\left(-\frac{2015}{2016}\right)\times\left(-\frac{2016}{2017}\right)\)
\(=\frac{1}{2017}\)
b.
\(\frac{2^{50}\times7^2+2^{50}\times7}{4^{26}\times112}=\frac{2^{50}\times\left(7^2+7\right)}{\left(2^2\right)^{26}\times112}=\frac{2^{50}\times\left(49+7\right)}{2^{52}\times2\times56}=\frac{56}{2^3\times56}=\frac{1}{8}\)
a. (1/2-1).(1/3-1)(1/4-1). ... .(1/2017-1)=(-1/2)(-2/3)(-3/4). ... .(-2016/2017)
Vì dãy số có 2016 số hạng âm nên tích của chúng là một số dương.
Ta có:(-1/2)(-2/3)(-3/4). ... . (-2016/2017)=1/2017
![](https://rs.olm.vn/images/avt/0.png?1311)
Công thức tổng quát: \(1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)
\(1+2+3+...+10000=\frac{10000\left(10000+1\right)}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(S=2014+\frac{2014}{1+2}+\frac{2014}{1+2+3}+...+\frac{2014}{1+2+3+...+10000}\)
\(S=\frac{2014}{\frac{1.2}{2}}+\frac{2014}{\frac{2.3}{2}}+\frac{2014}{\frac{3.4}{2}}+...+\frac{2014}{\frac{10000.10001}{2}}\)
\(S=\frac{4028}{1.2}+\frac{4028}{2.3}+\frac{4028}{3.4}+...+\frac{4028}{10000.10001}\)
\(S=4028\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10000.10001}\right)\)
\(S=4028\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{10001-10000}{10000.10001}\right)\)
\(S=4028\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10000}-\frac{1}{10001}\right)\)
\(S=4028\left(1-\frac{1}{10001}\right)=\frac{40280000}{10001}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(A=\left(-1\right)^{2n}.\left(-1\right)^n.\left(-1\right)^{n+1}=\left(-1\right)^{3n+1}\)
b) \(B=\left(10000-1^2\right)\left(10000-2^2\right).........\left(10000-1000^2\right)\)
\(=\left(10000-1^2\right)\left(10000-2^2\right)......\left(10000-100^2\right)....\left(10000-1000^2\right)\)
\(=\left(10000-1^2\right)\left(10000-2^2\right).....\left(10000-10000\right).....\left(10000-1000^2\right)=0\)
c) \(C=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)..........\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right).....\left(\frac{1}{125}-\frac{1}{5^3}\right)......\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)........\left(\frac{1}{125}-\frac{1}{125}\right).....\left(\frac{1}{125}-\frac{1}{25^3}\right)=0\)
d) \(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)........\left(1000-10^3\right)}\)
\(=1999^{\left(1000-1^3\right)\left(1000-2^3\right)........\left(1000-1000\right)}=1999^0=1\)