Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{200.201}\)
=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{200}-\frac{1}{201}\)
=\(\frac{1}{2}-\frac{1}{201}\)
=\(\frac{199}{402}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{200.201}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{200}-\frac{1}{201}\)
\(=\frac{1}{2}-\frac{1}{201}=\frac{199}{402}\)
A= \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2018.2019}\)
A= 1 - \(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{2018}-\frac{1}{2019}\)
A= 1 - \(\frac{1}{2019}\)
A= \(\frac{2018}{2019}\)
a)=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{49}{100}\)
b)\(=\frac{201.204+1}{\left(201+2\right).204-407}\)
\(=\frac{201.204+1}{201.204+2.204-407}\)
\(=\frac{201.204+1}{201.204+1}\)
=1
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{14.15}+\frac{1}{15.16}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{16}\)
\(=1-\frac{1}{16}\)
\(=\frac{15}{16}\)
Chúc bạn học giỏi nha!!!
K cho mik vs nhé
1/1.2+1/2.3+1/3.4+.........+1/14.15+1/15.16
=1-1/2+1/2-1/3+...+1/15-1/16
=1-1/16
=15/16 *k mk nha*
\(\frac{1313}{1212}:x=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\)\(\frac{1}{5.6}\)
\(\Leftrightarrow\frac{13}{12}:x=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(\Leftrightarrow\frac{13}{12}:x=1-\frac{1}{6}\)
\(\Leftrightarrow\frac{13}{12}:x=\frac{5}{6}\)
\(\Leftrightarrow x=\frac{13}{12}:\frac{5}{6}\)
\(\Leftrightarrow x=\frac{13}{10}\)
Vậy \(x=\frac{13}{10}\)
~~~~~Hok tốt ~~~~~
a,\(\frac{1313}{1212}\div x=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}\)
\(\frac{13}{12}\div x=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(\frac{13}{12}\div x=1-\frac{1}{6}\)
\(\frac{13}{12}\div x=\frac{5}{6}\)
\(x=\frac{13}{12}\div\frac{5}{6}\)
\(x=\frac{13}{12}\times\frac{6}{5}\)
\(x=\frac{13}{10}\)
Chúc bạn hok tốt !
\(\frac{1313}{1212}:x=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\)\(\frac{1}{5.6}\)
\(\Leftrightarrow\frac{13}{12}:x=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(\Leftrightarrow\frac{13}{12}:x=1-\frac{1}{6}\)
\(\Leftrightarrow\frac{13}{12}:x=\frac{5}{6}\)
\(\Leftrightarrow x=\frac{13}{12}:\frac{5}{6}\)
\(\Leftrightarrow x=\frac{13}{10}\)
Hok tốt
\(\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{9}{20}\)
\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...-\dfrac{1}{x}+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{9}{20}\)
\(\dfrac{1}{2}+0+0+0+...+0-\dfrac{1}{x+1}=\dfrac{9}{20}\)
\(\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{9}{20}\)
\(\dfrac{1}{x+1}=\dfrac{1}{20}\)
\(x+1=20\)
\(x=20-1\)
\(x=19\)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19.20}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)
\(=\frac{1}{2}-\frac{1}{20}\)
\(=\frac{9}{20}\)
Ta có công thức :\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{19.20}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\)
\(=\frac{1}{2}-\frac{1}{20}\)
\(=\frac{9}{20}\)