Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: 12 + 62 + 82=1 + 36 + 64 = 101
22 + 42 + 92 = 4 + 16 + 81 = 101
Vậy 12 + 62 + 82 = 22 + 42 + 92
14x + 54 = 82
175 + (30 - x) = 2001
1551- 10 (x + 1) = 55
5 . (x + 12) + 22 = 92
6 . (x + 23) + 40 = 100
14x + 54 = 82
14x = 28
x = 2
175 + (30 - x) = 2001
30 - x = 1826
x = 30 - 1826
x = - 1796
1551 - 10 ( x + 1 ) = 55
10(x + 1) = 1496
x + 1 = 149,6
x = 148,6
5 . (x + 12) + 22 = 92
5 . (x + 12) = 70
x + 12 = 14
x = 2
6 . (x + 23) + 40 = 100
6 . (x + 23) = 60
x + 23 = 10
x = - 13
\(14x+54=82\)
\(\Leftrightarrow14x=82-54\)
\(\Leftrightarrow14x=28\)
\(\Leftrightarrow x=2\)
Vậy \(x=2\)
\(175+\left(30-x\right)=2001\)
\(\Leftrightarrow30-x=2001-175\)
\(\Leftrightarrow30-x=1826\)
\(\Leftrightarrow x=-1796\)
Vậy \(x=-1796\)
\(1551-10\left(x+1\right)=55\)
\(\Leftrightarrow10.\left(x+1\right)=1551-55\)
\(\Leftrightarrow10.\left(x+1\right)=1496\)
\(\Leftrightarrow x+1=\frac{1496}{10}\)
\(\Leftrightarrow x=\frac{1486}{10}\)
Vậy \(x=\frac{1486}{10}\)
\(5.\left(x+12\right)+22=92\)
\(\Leftrightarrow5.\left(x+12\right)=70\)
\(\Leftrightarrow x+12=14\).
\(\Leftrightarrow x=2\)
Vậy \(x=2\)
\(6.\left(x+23\right)+40=100\)
\(\Leftrightarrow6.\left(x+23\right)=60\)
\(\Leftrightarrow x+23=10\)
\(\Leftrightarrow x=-13\)
Vậy \(x=-13\)
3.20
a) (-28) + (-35) – 92 + (-82)
= -28 – 35 – 92 – 82
= - (28 + 35 + 92 + 82)
= - [(28 + 82) + (35 + 92)]
= - (110 + 127)
= - 237.
b) 15 – (-38) + (-55) – (+47)
= 15 + 38 – 55 – 47
= 53 – 55 – 47
= - (55 – 53) – 47
= - 2 – 47
= - (2 + 47)
= - 49
Bài 3.20:
a: =-28-35-92-82
=-110-127
=-237
b: =15+38-55-47
=-40-47+38
=-2-47
=-49
Bài 3.21:
a: =62-81-12+59-9=50+50-81=19
b: =39-13-62-39=-75
Đặt A=11⋅2+12⋅3+...+17⋅8A=11⋅2+12⋅3+...+17⋅8
Dễ thấy: B=122+132+...+182B=122+132+...+182<A=11⋅2+12⋅3+...+17⋅8(1)<A=11⋅2+12⋅3+...+17⋅8(1)
Ta có:A=11⋅2+12⋅3+...+17⋅8A=11⋅2+12⋅3+...+17⋅8
=1−12+12−13+...+17−18=1−12+12−13+...+17−18
=1−18<1(2)=1−18<1(2)
Từ (1);(2)(1);(2) ta có: B<A<1⇒B<1
Lời giải:
\(B=(1.2)^2+(2.2)^2+(3.2)^2+...+(10.2)^2\)
\(=2^2.1^2+2^2.2^2+2^2.3^2+...+2^2.10^2=2^2(1^2+2^2+...+10^2)\)
\(=4A=4.385=1540\)
a, 13 2 = 169 < 216 = 13 2
b, 6 2 + 8 2 = 100 < 196 = 6 + 8 2
c, 13 2 - 9 2 = 88 > 16 = 13 - 9 2
d, a 2 + b 2 < a 2 + b 2 + 2 a b = a + b 2 a ; b ∈ N *
a)\(\dfrac{1}{2^2}<\dfrac{1}{1.2}\)
\(\dfrac{1}{3^3}<\dfrac{1}{2.3}\)
\(...\)
\(\dfrac{1}{8^2}<\dfrac{1}{7.8}\)
Vậy ta có biểu thức:
\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}<\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}\)
\(B= 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)
\(B<1-\dfrac{1}{8}=\dfrac{7}{8}<1\)
Vậy B < 1 (đpcm)
Giải:
a) Ta có:
1/22=1/2.2 < 1/1.2
1/32=1/3.3 < 1/2.3
1/42=1/4.4 < 1/3.4
1/52=1/5.5 < 1/4.5
1/62=1/6.6 < 1/5.6
1/72=1/7.7 < 1/6.7
1/82=1/8.8 <1/7.8
⇒B<1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8
B<1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8
B<1/1-1/8
B<7/8
mà 7/8<1
⇒B<7/8<1
⇒B<1
b)S=3/1.4+3/4.7+3/7.10+...+3/40.43+3/43.46
S=1/1-1/4+1/4-1/7+1/7-1/10+...+1/40-1/43+1/43-1/46
S=1/1-1/46
S=45/46
Vì 45/46<1 nên S<1
Vậy S<1
Chúc bạn học tốt!