Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = 2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰²²
2A = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²³
A = 2A - A
= (2 + 2² + 2³ + 2⁴ + ... + 2²⁰²³) - (2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰²²)
= 2²⁰²³ - 2⁰
= 2²⁰²³ - 1
Vậy A = B
b) A = 2021 . 2023
= (2022 - 1).(2022 + 1)
= 2022.(2022 + 1) - 2022 - 1
= 2022² + 2022 - 2022 - 1
= 2022² - 1 < 2022²
Vậy A < B
\(A=1+2+2^2+...+2^{2022}\)
\(\Rightarrow2A=2+2^2+...+2^{2023}\)
\(\Rightarrow2A-A=2^{2023}-1\)
\(\Rightarrow A=2^{2023}-1\)
\(\Rightarrow A< 2^{2023}=2^2.2^{2021}=4.2^{2021}< 5^{2021}\)
\(\Rightarrow A< B\)
\(A=2+2^2+2^3+...+2^{2021}\)
=>\(2A=2^2+2^3+2^4+...+2^{2022}\)
=>\(2A-A=2^2+2^3+...+2^{2021}+2^{2022}-2-2^2-2^3-...-2^{2021}\)
=>\(A=2^{2022}-2\)
=>A<B
a) \(A=2+2^2+2^3+...+2^{2022}\)
\(2A=2.\left(2+2^2+2^3+...+2^{2022}\right)\)
\(2.A=2^2+2^3+2^4+...+2^{2023}\)
\(2A-A=\left(2^2+2^3+2^4+...+2^{2023}\right)-\left(2+2^2+2^3+...+2^{2022}\right)\)
\(A=2^{2023}-2\)
b) A + 2 = 2x
Hay \(\left(2^{2023}-2\right)+2=2^x\)
\(2^{2023}-2+2=2^x\)
\(2^{2023}=2^x\)
\(\Rightarrow x=2023\)
a, A = 21 + 22 + 23 + ...+ 22022
2A = 22 + 23 +...+ 22022 + 22023
2A - A = 22023 - 21
A = 22023 - 2
b, A + 2 = 2\(^x\) ⇒ 22023 - 2 + 2 = 2\(x\)
22023 = 2\(^x\)
2023 = \(x\)
a) \(S=1+2+2^2+2^3+...+2^{2022}=\dfrac{2^{2022+1}-1}{2-1}=2^{2023}-1\)
b) \(S=1+4+4^2+4^3+...+4^{2022}=\dfrac{4^{2022+1}-1}{4-1}=\dfrac{4^{2023}-1}{3}\)
\(S=1+2+2^2+2^3+...+2^{2022}\\ 2S=2+2^2+2^3+2^4+...+2^{2023}\\ 2S-S=2+2^2+2^3+2^4+...+2^{2023}-1-2-2^2-2^3-...-2^{2022}\\ S=2^{2023}-1\\ S=4+4^2+4^3+...+4^{2022}\\ 4S=4^2+4^3+4^4+...+4^{2023}\\ 4S-S=4^2+4^3+4^4+...+4^{2023}-4-4^2-4^3-...-4^{2023}\\ 3S=4^{2023}-4\\ S=\dfrac{4^{2023}-4}{3}\)
\(A=2+2^2+2^3+...+2^{2020}+2^{2021}+2^{2022}\\=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^{2021}+2^{2022})\\=2\cdot(1+2)+2^3\cdot(1+2)+2^5\cdot(1+2)+...+2^{2021}\cdot(1+2)\\=2\cdot3+2^3\cdot3+2^5\cdot3+...+2^{2021}\cdot3\\=3\cdot(2+2^3+2^5+..+2^{2021})\)
Vì \(3\cdot\left(2+2^3+2^5+...+2^{2021}\right)⋮3\)
nên \(A⋮3\).
\(Toru\)
A=(2+22)+22(2+22)+...+22020(2+22)
A= 6.1+22.6+...+22020.6
A=6(1+22+...+22020) chia hết cho 3
vậy A chia hết cho 3
2A=2*(1+2+22+...+22020)=2+22+...+22021
2A-A=(1+2+22+...+22021)-(1+2+22+...+22020)
A=22021-1<2021
Giải:
A=1+2+22+23+...+22020
2A=2+22+23+24+...+22021
2A-A=(2+22+23+24+...+22021)-(1+2+22+23+...+22020)
A=22021-1
⇒A<22021
Chúc bạn học tốt!
Có : \(S=1+2+2^2+2^3+....+2^{99}\)
\(\Rightarrow2S=2+2^2+2^3+....+2^{100}\)
\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{100}\right)-\left(1+2+2^2+....+2^{99}\right)\)
\(\Rightarrow S=2^{100}-1< 2^{100}\)
Vậy \(S< 2^{100}\)
S=1+2+22+23+....+299
⇒2S=2+22+23+....+2100
⇒2S−S=2100-1
S=2100-1
vì 2100 -1<2100
⇒S<2100
giups mình với
1+2+22+23+......22022>5.2221