Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ biểu thức trên ta được
A=1/2+1/2^2+1/2^3+....+1/2^11+1/2^12
2A-A=2(1/2+1/2^2+1/2^3+....+1/2^11+1/2^12)-(1/2+1/2^2+1/2^3+....+1/2^11+1/2^12)
A=1+1/2^2+1/2^3+....+1/2^11-1/2-1/2^2-...-1/2^12
A=1/2-1/2^12
Ủng hộ cho mình nha bạn
\(A=\)\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}+\frac{1}{2048}+\frac{1}{4096}\)
\(A=\)\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{12}}\)
\(2A=\)\(2\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{12}}\right)\)
\(2A=\)\(1+\frac{1}{2}+...+\frac{1}{2^{11}}\)
\(2A-A=\)\(\left(1+\frac{1}{2}+...+\frac{1}{2^{11}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{12}}\right)\)
\(A=1-\frac{1}{2^{12}}\)
Đặt \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}+\frac{1}{2048}+\frac{1}{4096}\)
\(\Leftrightarrow A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{10}}+\frac{1}{2^{11}}+\frac{1}{2^{12}}\)
Nhân 2 vào 2 vế của biểu thức A , ta được :
\(2A=2\left(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{10}}+\frac{1}{2^{11}}+\frac{1}{2^{12}}\right)\)
\(\Rightarrow2A=1+\frac{1}{2^1}+\frac{1}{2^2}+....+\frac{1}{2^9}+\frac{1}{2^{10}}+\frac{1}{2^{11}}\)
Lấy biểu thức 2A - A , Ta được :
\(2A-A=\left(1+\frac{1}{2^1}+\frac{1}{2^2}+....+\frac{1}{2^{10}}+\frac{1}{2^{11}}\right)-\left(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{11}}+\frac{1}{2^{12}}\right)\)
\(\Rightarrow A=1-\frac{1}{2^{12}}\)
Ta co: 2S=2+1+1/2+1/4+...+1/2048
2S-S=2+1+1/2+1/4+...+1/2048-1-1/2-1/4-...-1/2048-1/4096
\(\Rightarrow\)S=2-1/4096 =8191/4096
A = 1/2+1/4+...+1/2048
2A= 1+ 1/2+ 1/4+...+1/1024
2A-A= ( 1+ 1/2+...+1/1024 ) - (1/2+1/4+...+2048)
A= 1- 1/2048
A= 2047/2048
Đặt \(A=1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-..-\frac{1}{2048}\)
\(\Rightarrow A=1-\left(1-\frac{1}{2}\right)-\left(\frac{1}{2}-\frac{1}{4}\right)-..-\left(\frac{1}{1024}-\frac{1}{2048}\right)\)
\(\Rightarrow A=1-1+\frac{1}{2}-\frac{1}{2}+\frac{1}{4}-..-\frac{1}{1024}+\frac{1}{2018}\)
\(\Rightarrow A+\frac{1}{2018}\)
1-1/2-1/4-1/8-1/16-1/32-1/64-1/128-1/256-1/512-1/1024-1/2048 =0.00048828125
Đặt A=\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+................+\frac{1}{2048}+\frac{1}{4096}\)
2A=\(1+\frac{1}{2}+\frac{1}{4}+....................+\frac{1}{1024}+\frac{1}{2048}\)
2A-A=\(\left(1+\frac{1}{2}+\frac{1}{4}+................+\frac{1}{1024}+\frac{1}{2048}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...............+\frac{1}{2048}+\frac{1}{4096}\right)\)
A=\(1-\frac{1}{4096}\)
A=\(\frac{4095}{4096}\)
4095/4096 đó lam lợn hả