K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
5 tháng 7 2021

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2005}}\)

\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2004}}\)

\(A=1-\frac{1}{2^{2005}}\)

9 tháng 1 2024

a, 2\(^3\) . x + 2005\(^0\) . x = 994-15:3+1\(^{2025}\) 

   8 .x + 1 . x = 990

x . [ 8 +1 ] = 990

x . 9 = 990

x = 990 : 9

x = 110

9 tháng 1 2024

các bạn giúp mình với mình đang vội.

 

a: \(\left(2^3\right)^{1^{2005}}\cdot x+2005^0\cdot x=9915:3+1^{2025}\)

=>\(8\cdot x+1\cdot x=3305+1\)

=>\(9x=3306\)

=>\(x=\dfrac{3306}{9}=\dfrac{1102}{3}\)

b: \(2^x+2^{x+1}+2^{x+2}+2^{x+3}=480\)

=>\(2^x+2^x\cdot2+2^x\cdot4+2^x\cdot8=480\)

=>\(2^x\left(1+2+4+8\right)=480\)

=>\(2^x\cdot15=480\)

=>\(2^x=32\)

=>\(2^x=2^5\)

=>x+5

 

ta thấy : \(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}=1-\dfrac{1}{2}\)

tương tự: \(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3}\)

....

\(\dfrac{1}{2005^2}=\dfrac{1}{2005.2005}< \dfrac{1}{2004.2005}=\dfrac{1}{2004}-\dfrac{1}{2005}\)

cộng vế theo vé các BĐT trên, ta có:

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2005^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2004}-\dfrac{1}{2005}=1-\dfrac{1}{2005}=\dfrac{2004}{2005}\)=> đpcm

17 tháng 4 2018

\(A=\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{2005^2}\)

\(A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2004.2005}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2004}-\frac{1}{20055}\)

\(A< 1-\frac{1}{2005}=\frac{2004}{2005}\)

\(\Rightarrow A< \frac{2004}{2005}\left(đpcm\right)\)

17 tháng 4 2018

Đặt M=1/2^2+1/3^2+1/4^2+...+1/2005^2

M<1/1.2+1/2.3+1/3.4+...+1/2004.2005

M<1-1/2+1/2-1/3+1/3-1/4+...+1/2004-1/2005

M<1-1/2005=2004/2005(đpcm)

21 tháng 1 2017

ko bit

9 tháng 1 2022

Ko biết

6 tháng 10 2019

A=1/3+1/3^2+...+1/3^2005

=> 3A= 1+1/3+...+1/3^2004

=> 3A-A=(1+1/3+...+1/3^2004)-(1/3+1/3^2+...+1/3^2005)

=> 2A =1-1/3^2005 <1 

=> A<1/2

10 tháng 6 2019

\(A=\frac{2}{1+2}+\frac{2+3}{1+2+3}+...+\frac{2+3+...+20}{1+2+3+...+20}\)

\(A=\frac{2}{3}+\frac{5}{6}+...+\frac{209}{210}\)

\(A=\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{6}\right)+...+\left(1-\frac{1}{210}\right)\)

\(A=\left(1+1+....+1\right)\left(\frac{1}{3}+\frac{1}{6}+...+\frac{1}{210}\right)\)

\(A=19-\left(\frac{2}{6}+\frac{2}{12}+...+\frac{2}{420}\right)\)

\(A=19-\left(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{20.21}\right)\)

\(A=19-2\cdot\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{20}-\frac{1}{21}\right)\)

\(A=19-2\cdot\left(\frac{1}{2}-\frac{1}{21}\right)\)

\(A=19-2\cdot\frac{19}{42}=19-\frac{19}{21}=\frac{380}{21}\)

Vậy A= \(\frac{380}{21}\)

10 tháng 6 2019

\(B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{2005}\right)\left(1-\frac{1}{2006}\right)\)

\(B=\frac{1}{2}\cdot\frac{2}{3}\cdot...\cdot\frac{2004}{2005}\cdot\frac{2005}{2006}\)

\(B=\frac{1\cdot2\cdot...\cdot2004\cdot2005}{2\cdot3\cdot...\cdot2005\cdot2006}\)

\(B=\frac{1}{2006}\)

Vậy \(B=\frac{1}{2006}\)

21 tháng 4 2021

A= \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{2005\cdot2006}\)

A= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2005}-\dfrac{1}{2006}\)

A= \(1-\dfrac{1}{2006}\)

A= \(\dfrac{2005}{2006}\)

Vậy A= \(\dfrac{2005}{2006}\)