Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có 1/2mũ 2 +1/3 mũ 2+1/4 mũ 2+...+1/100 mũ 2=1/2.2+1/3.3+1/4.4+...+1/100.100<1/2.3+1/3.4+1/4.5+...+1/99.100+1/100.101=1/2.3-1/100.101=1/6-1/10100=tự tính nhé
Ta có:
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{1}-\frac{1}{100}\)
\(=\frac{99}{100}\)
Mà \(\frac{99}{100}< 1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)
Vậy \(A< 1\)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
Ta có : \(\frac{1}{2^2}=\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)
\(\frac{1}{4^2}=\frac{1}{4\cdot4}< \frac{1}{3\cdot4}\)
...
\(\frac{1}{100^2}=\frac{1}{100\cdot100}< \frac{1}{99\cdot100}\)
=> \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
=> \(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
=> \(A< \frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)
Lại có : \(\frac{99}{100}< 1\)
=> \(A< \frac{99}{100}< 1\)=> \(A< 1\)( đpcm )
A=\(\frac{1}{3^2}\)+\(\frac{1}{4^2}\)+.........+\(\frac{1}{100^2}\)
A=\(\frac{1}{3^2}\)<\(\frac{1}{2.3}\)
\(\frac{1}{4^2}\)<\(\frac{1}{3.4}\)
\(\Rightarrow\)\(\frac{1}{3^2}\)+\(\frac{1}{4^2}\)+...+\(\frac{1}{100^2}\)<\(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)
=>\(\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}\)< \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{99}-\frac{1}{100}\)
=> \(\frac{1}{3^2}\)+\(\frac{1}{4^2}\)+.....+\(\frac{1}{100^2}\)< \(\frac{1}{2}-\frac{1}{100}\)
=>A< \(\frac{1}{2}\)
Ta có: \(A=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)
Ta thấy: \(\frac{1}{3^2}< \frac{1}{2\cdot3};\frac{1}{4^2}< \frac{1}{3\cdot4};\frac{1}{5^2}< \frac{1}{4\cdot5}...\frac{1}{100^2}< \frac{1}{99\cdot100}\)
\(\Rightarrow A< \frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{99\cdot100}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{100}\Rightarrow A< \frac{1}{2}\left(ĐPCM\right)\)
những ai thích xem minecraft và blockman go thì hãy xem kênh youtube của mik kênh mik là M.ichibi các bn nhớ sud và chia sẻ cho nhiều người khác nhé
Ta có : \(\frac{1}{4^2}=\frac{1}{4.4}< \frac{1}{3.4}\)
\(\frac{1}{5^2}=\frac{1}{5.5}< \frac{1}{4.5}\)
\(\frac{1}{6^2}=\frac{1}{6.6}< \frac{1}{5.6}\)
...
\(\frac{1}{100^2}=\frac{1}{100.100}< \frac{1}{99.100}\)
\(\Rightarrow\)K<\(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
K<\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
K<\(\frac{1}{3}-\frac{1}{100}< \frac{1}{3}\)
\(\Rightarrow K< \frac{1}{3}\) (1)
Ta có : \(\frac{1}{4^2}=\frac{1}{4.4}=\frac{1}{16}\)
\(\frac{1}{5^2}=\frac{1}{5.5}>\frac{1}{5.6}\)
\(\frac{1}{6^2}=\frac{1}{6.6}>\frac{1}{6.7}\)
...
\(\frac{1}{99^2}=\frac{1}{99.99}>\frac{1}{99.100}\)
\(\frac{1}{100^2}=\frac{1}{100.100}>\frac{1}{100.101}\)
\(\Rightarrow K>\frac{1}{16}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}+\frac{1}{100.101}\)
K>\(\frac{1}{16}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}...+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}\)
K>\(\frac{1}{16}+\frac{1}{5}-\frac{1}{101}>\frac{1}{5}\) (2)
Từ (1) và (2)
\(\Rightarrow\frac{1}{5}< K< \frac{1}{3}\)
Vậy \(\frac{1}{5}< K< \frac{1}{3}.\)
Mình ngu lắm dân trần đăng ninh chuyên anh mà làm sao giỏi toán được
thôi k cần