Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/6+1/12+1/20+1/30+1/42+1/56+1/72
A=1/2*3+1/3*4+1/4*5+1/5*6+1/6*7+1/7*8+1/8*9
A=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9
A=1/2-1/9
Câu B tương tự nha bạn :333
bạn đã kiểm tra kĩ chưa vậy?mình đọc đề câu B mà loạn não luôn á;-;
\(B=\frac{6}{1\cdot3}+\frac{6}{3\cdot5}+\cdot\cdot\cdot+\frac{6}{97\cdot99}\)
\(\Rightarrow B=3\cdot\left(\frac{2}{1\cdot3}+\cdot\cdot\cdot+\frac{2}{97\cdot99}\right)\)
\(\Rightarrow B=3\cdot\left(1-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{97}-\frac{1}{99}\right)\)
\(\Rightarrow B=3\cdot\left(1-\frac{1}{99}\right)\)
\(\Rightarrow B=3\cdot\frac{98}{99}\)
\(\Rightarrow B=\frac{98}{33}\)
\(A=\frac{1}{2}+\frac{1}{6}+\cdot\cdot\cdot+\frac{1}{42}\)
\(\Rightarrow A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdot\cdot\cdot+\frac{1}{6\cdot7}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{6}-\frac{1}{7}\)
\(\Rightarrow A=1-\frac{1}{7}\)
\(\Rightarrow A=\frac{6}{7}\)
\(A=\frac{1\cdot2+2\cdot4+3\cdot6+4\cdot8+5\cdot10+6\cdot12}{3\cdot4+6\cdot8+9\cdot12+12\cdot16+15\cdot20+18\cdot24}\)
\(A=\frac{2\cdot3\left[1\cdot2\right]+2\cdot3\left[2\cdot4\right]+2\cdot3\left[3\cdot6\right]+2\cdot3\left[4\cdot8\right]+2\cdot3\left[5\cdot10\right]}{3\cdot4\left[3\cdot4+6\cdot8+9\cdot12+12\cdot16+15\cdot20\right]}\)
\(A=\frac{\left[3\cdot4+6\cdot8+9\cdot12+12\cdot16+15\cdot20\right]}{2\cdot3\left[3\cdot4+6\cdot8+9\cdot12+12\cdot16+15\cdot20\right]}=\frac{1}{2\cdot3}=\frac{1}{6}\)
Vì: \(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}=0\),nên kết quả bằng 0
Loại bài toán này là bài toán về tích của dãy số. Đầu tiên, ta nhận thấy rằng dãy số cho trước có quy luật như sau: mỗi phân số trong dãy có tử số là một số lẻ và mẫu số là một số chẵn. Cụ thể hơn, tử số của phân số thứ n là 3n - 2 và mẫu số của phân số thứ n là 3n. Vậy, ta có thể viết lại A như sau: A = \prod_{n=1}^{82} \frac{3n-2}{3n} Bây giờ, để chứng minh A < 1/27, ta sẽ so sánh từng phần tử trong dãy với 1/3. Nếu tất cả các phần tử đều nhỏ hơn hoặc bằng 1/3, thì tích của chúng cũng sẽ nhỏ hơn hoặc bằng (1/3)^82 = 1/(3^82). Ta có: \frac{3n-2}{3n} = 1 - \frac{2}{3n} <= 1 - \frac{2}{3*1} = \frac{1}{3} Vậy, tất cả các phần tử trong dãy đều nhỏ hơn hoặc bằng 1/3. Do đó: A <= (1/3)^82 < (1/27) Vậy, ta đã chứng minh được rằng A < 1/27.
\(C=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{110}\)
=> \(C=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{10.11}\)
=> \(C=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+...+\left(\frac{1}{10}-\frac{1}{11}\right)\)
=> \(C=\frac{1}{1}-\frac{1}{11}=\frac{10}{11}\)
Ta có: \(\frac{1}{n\left(n+1\right)}=\frac{n+1-n}{n\left(n+1\right)}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
\(C=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)
\(=1-\frac{1}{11}=\frac{10}{11}\)
Bạn có muốn biết nơi nào bạn sẽ vừa HỌC vừa CHƠI vừa KIẾM TIỀN được không?
BÀI TẬP KHÓ?
CÓ ALFAZI
Năm học mới rồi, các bạn bè có anh chị hỗ trợ bài tập, hướng dẫn học tập, cuối năm đạt kết quả tốt? ✅Bạn không có ai để làm điều đó
Truy cập: https://alfazi.edu.vn để trao đổi bài tập, chia sẻ tài liệu và tham gia hoạt động bổ ích cho học sinh, sinh viên nhé!
Đặc biệt, khi bạn tham gia giải đáp bài tập, bạn sẽ nhận được “phụ cấp” siêu khủng từ Web!
Một web học tập rất thân thiện, môi trường học tập cực tốt, Các bạn đừng bỏ phí cơ hội này nhé!
Web rất hân hạnh được đón tiếp những tài năng tương lai của đất nước!
❤️❤️😘😘😘Love you💋💋
TRUY CẬP HTTPS://ALFAZI.EDU.VN ĐỂ NHẬN 20.000 SAU KHI ĐĂNG KÍ!
A = 1 - 2 + 3 - 4 + 5 - 6 + ... + 49 - 50 + 51
A = ( 1 + 3 + 5 + ... + 51 ) - ( 2 + 4 + ... + 50 )
+) Xét VT :
SSH là : ( 51 - 1 ) : 2 + 1 = 26 ( số )
Tổng là : ( 51 + 1 ) . 26 : 2 = 676
+) Xét VP :
SSH là : ( 50 - 2 ) : 2 + 1 = 25 ( số )
Tổng là : ( 50 + 2 ) . 25 : 2 = 650
=> A = 676 - 650
=> A = 26
Vậy,.........
\(\frac{1}{2}+\frac{1}{6}+\cdot\cdot\cdot+\frac{1}{3800}\)
\(=\frac{1}{1\cdot2}+\cdot\cdot\cdot+\frac{1}{19\cdot20}\)
\(=1-\frac{1}{2}+\cdot\cdot\cdot+\frac{1}{19}-\frac{1}{20}\)
\(=1-\frac{1}{20}\)
\(=\frac{19}{20}\)
bạn ơi Nguyễn Tuấn Thảo ơi bn sai r 19 nhân 20 = 380 mà đề bài ra là 3800 bạn nhé