Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{1}{30}\)+\(\frac{1}{42}\)+\(\frac{1}{56}\)+\(\frac{1}{72}\)+\(\frac{1}{90}\)+\(\frac{1}{110}\)+\(\frac{1}{132}\)
A=\(\frac{1}{5.6}\)+\(\frac{1}{6.7}\)+\(\frac{1}{7.8}\)+\(\frac{1}{8.9}\)+\(\frac{1}{9.10}\)+\(\frac{1}{10.11}\)+\(\frac{1}{11.12}\)
A= \(\frac{1}{5}\)-\(\frac{1}{6}\)+\(\frac{1}{6}\)-\(\frac{1}{7}\)+\(\frac{1}{7}\)-\(\frac{1}{8}\)+\(\frac{1}{8}\)-\(\frac{1}{9}\)+\(\frac{1}{9}\)-\(\frac{1}{10}\)+\(\frac{1}{10}\)-\(\frac{1}{11}\)+\(\frac{1}{11}\)-\(\frac{1}{12}\)
A= \(\frac{1}{5}\)-\(\frac{1}{12}\)=\(\frac{7}{60}\)
a)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{3}{4}+...+\frac{1}{9}-\frac{1}{10}\)
= \(1+\left(\frac{-1}{2}+\frac{1}{2}\right)+\left(\frac{-1}{3}+\frac{1}{3}\right)+...+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{10}\)
= \(1-\frac{1}{10}\)
=\(\frac{9}{10}\)
b)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
=\(1+\left(\frac{-1}{3}+\frac{1}{3}\right)+\left(\frac{-1}{5}+\frac{1}{5}\right)+\left(\frac{-1}{7}+\frac{1}{7}\right)+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{11}\)
=\(1-\frac{1}{11}\)
= \(\frac{10}{11}\)
c) đặt A=\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9.11}\)
\(\frac{1}{3}A\)=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(\frac{2}{3}A\)=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(\frac{2}{3}A\)=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(\frac{2}{3}A\)=\(1+\left(\frac{-1}{3}+\frac{1}{3}\right)+\left(\frac{-1}{5}+\frac{1}{5}\right)+\left(\frac{-1}{7}+\frac{1}{7}\right)+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{11}\)
\(\frac{2}{3}A\)=\(\frac{10}{11}\)
A= \(\frac{10}{11}:\frac{2}{3}\)
A= \(\frac{10}{11}.\frac{3}{2}\)=\(\frac{15}{11}\)
d) giả tương tự câu c kết quả \(\frac{25}{11}\)
tổng đặc biệt đó bạn
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{9\times10}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(1-\frac{1}{10}=\frac{9}{10}\)
những câu sau cũng áp dụng như vậy nhé
B)2-9+1-3
.vì bỏ ngoặc trước nó là dấu trừ thì ta đổi dấu các số hạng trong ngoặc
4S = 4/(5x5) + 4/(9x9) + … + 1/(409x409)
Ta thấy:
4/(5x5) < 4/(3x7) = 1/3 – 1/7
4/(9x9) < 4/(7x11) = 1/7 – 1/11
…………
4/(409x409) < 4/(407x411) = 1/407 – 1/411
Mà :
4/(3x7) + 4/(7x11) + …. + 4/(407x411) = 1/3 – 1/411 = 136/411
4S < 136/411
S < 34/411 < 34/408 = 1/12
Hay S < 1/12
a,\(\frac{3}{2}\cdot\frac{7}{3}+\frac{4}{3}\cdot\frac{1}{2}\)=\(\frac{7}{2}+\frac{2}{3}\)=\(\frac{25}{6}\)
b,\(\frac{2}{145}\cdot\left(\frac{1}{9}-\frac{13}{3}+1\right)\)=\(\frac{2}{145}.-\frac{29}{9}=-\frac{2}{45}\)
c.\(\frac{15}{7}:\left(-\frac{31}{12}-\frac{1}{18}-\frac{20}{9}\right)\)=\(\frac{15}{7}:\left(-\frac{175}{36}\right)=-\frac{108}{245}\)
\(1\frac{1}{2}.2\frac{1}{3}+1\frac{1}{3}.\frac{1}{2}\)
\(=\frac{3}{2}.\frac{7}{3}+\frac{4}{3}.\frac{1}{2}\)
\(=\frac{7}{2}+\frac{2}{3}\)
\(=\frac{25}{6}\)
\(\frac{1}{9}.\frac{2}{145}-4\frac{1}{3}.\frac{2}{145}+\frac{2}{145}\)
\(=\frac{2}{1305}-\frac{13}{3}.\frac{2}{145}+\frac{2}{145}\)
\(=\frac{2}{1305}-\frac{26}{435}+\frac{2}{145}\)
\(=\frac{-2}{45}\)
\(\left(-2\frac{7}{12}\right):2\frac{1}{7}-\frac{1}{18}:2\frac{1}{7}+2\frac{2}{9}:2\frac{1}{7}\)
\(=\frac{-17}{12}:\frac{15}{7}-\frac{1}{18}:\frac{15}{7}+\frac{20}{9}:\frac{15}{7}\)
\(=\left(\frac{-17}{2}-\frac{1}{18}+\frac{20}{9}\right):\frac{15}{7}\)
\(=\frac{-19}{3}.\frac{7}{15}\)
\(=\frac{-133}{45}\)
học tốt
a. \(\left[\left(-2\right)^5.2014-4^2.2015\right]-\left(-2015^0+3^2-2^3\right)\)
\(=-64448-32240+1-9+8=-96688\)
Tớ lm lại nhé:
SBC = 9-1/2-1/3-1/4-...-1/10
=1+1+...+1(9 số 1) -1/2-1/3-1/4-1/5-...-1/10.
=(1-1/2)+(1-1/3)+...+(1-1/10)
=1/2+2/3+...+9/10= SC
=> phép chia có thương là 1(vì SBC=SC)
Gọi tử số của B là a và mẫu là b
\(a=1+2+2^2+2^3+...+2^{2008}\)
\(2a=2+2^2+2^3+...+2^{2009}\)
\(2a-a=\left(2+2^2+2^3+...+2^{2009}\right)-\left(1+2+2^2+2^3+...+2^{2008}\right)\)
\(a=2^{2009}-1\)
\(a=\frac{2^{2009}-1}{1-2^{2009}}\)
\(a=1\)
$2a-a=\left(2+2^2+2^3+...+2^{2009}\right)-\left(1+2+2^2+...+2^{2008}\right)$2a−a=(2+22+23+...+22009)−(1+2+22+...+22008)
$a=\left(2-2\right)+\left(2^2-2^2\right)+...+\left(2^{2008}-2^{2008}\right)+2^{2009}-1$a=(2−2)+(22−22)+...+(22008−22008)+22009−1
$a=0+0+0+2^{2009}-1$a=0+0+0+22009−1
$a=2^{2009}-1$a=22009−1
$B=\frac{2^{2009}-1}{1-2^{2009}}$B=22009−11−22009
B= -1
a, Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{2017^2}< \frac{1}{2016.2017}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2017^2}>\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2016.2017}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}=1-\frac{1}{2017}< 1\)Vậy...
b, Đặt A = \(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{10000}\)
\(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)
\(A=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)
Đặt B = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};.....;\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1\)
Thay B vào A ta được:
\(A< \frac{1}{4}\left(1+1\right)=\frac{1}{4}.2=\frac{1}{2}\)
Vậy....
c, Ta có: \(\frac{1}{2^2}>\frac{1}{2.3};\frac{1}{3^2}>\frac{1}{3.4};....;\frac{1}{9^2}>\frac{1}{9.10}\)
\(\Rightarrow A>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)(1)
Lại có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};....;\frac{1}{9^2}< \frac{1}{8.9}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}\)(2)
Từ (1) và (2) suy ra \(\frac{2}{5}< A< \frac{8}{9}\)(đpcm)
d, chắc là đề sai
e, giống câu a
Đặt \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\)
=>\(2A=1+\dfrac{1}{2}+...+\dfrac{1}{2^8}\)
=>\(2A-A=1+\dfrac{1}{2}+...+\dfrac{1}{2^8}-\dfrac{1}{2}-\dfrac{1}{2^2}-...-\dfrac{1}{2^9}\)
=>\(A=1-\dfrac{1}{2^9}=\dfrac{2^9-1}{2^9}=\dfrac{511}{512}\)