Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{x.\left(x+2\right)}=\frac{2015}{2016}\)
\(\Rightarrow\frac{2}{1}-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+...+\frac{2}{x}-\frac{2}{\left(x+2\right)}=\frac{2015}{2016}\)
\(\Rightarrow2-\frac{2}{x+2}=\frac{2015}{2016}\)
\(\Rightarrow\frac{2}{x+2}=2-\frac{2015}{2016}\)
\(\Rightarrow\frac{2}{x+2}=\frac{2017}{2016}\)
\(\Rightarrow2017.\left(x+2\right)=2.2016\)
\(\Rightarrow2017x+4034=4032\)
\(\Rightarrow2017x=-2\)
\(\Rightarrow x=-\frac{2}{2017}\)
Vậy......
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{x\cdot\left(x+2\right)}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{2015}{2016}\)
\(=1-\frac{1}{x+2}=\frac{2015}{2016}\)
=>\(\frac{1}{x+2}=\frac{1}{2016}\)
=>\(x+2=2016\)
=>\(x=2014\)
Vậy.......
M = 5 + 53 + 55 + ... + 547 + 549
52M = 52(5 + 53 + 55 + ... + 547 + 549)
25M = 53 + 55 + 57 + ... + 549 + 551
25M - M = ( 53 + 55 + 57 + ... + 549 + 551) - (5 + 53 + 55 + ... + 547 + 549)
24M = 551 - 5
M = \(\frac{5^{51}-5}{24}\)
\(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right)y=\frac{2}{3}\)
=> \(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)y=\frac{2}{3}\)
=> \(\frac{1}{2}\left(1-\frac{1}{11}\right)y=\frac{2}{3}\)
=> \(\frac{1}{2}.\frac{10}{11}y=\frac{2}{3}\)
=> \(\frac{5}{11}y=\frac{2}{3}\)
=>y = \(\frac{2}{3}:\frac{5}{11}\)
=> y = \(\frac{22}{15}\)
cho mk cái lời giải thích chỗ nhân 1/2 ý mk ko hiểu mong bn thông cảm
\(2.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right).y=\frac{2}{3}\)
\(2\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right).y=\frac{2}{3}\)
\(2.\left(\frac{1}{1}-\frac{1}{11}\right).y=\frac{2}{3}\)
\(2.\frac{10}{11}.y=\frac{2}{3}\)
\(\frac{20}{11}.y=\frac{2}{3}\)
\(\Rightarrow y=\frac{11}{30}\)
Study well
\(\frac{4}{1\cdot3}+\frac{4}{3\cdot5}+...+\frac{4}{99\cdot101}-x-\frac{200}{101}=1\)
\(\frac{4}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)-x=1+\frac{200}{101}\)
\(\frac{4}{2}\cdot\left(1-\frac{1}{101}\right)-x=\frac{301}{101}\)
\(\frac{4}{2}\cdot\frac{100}{101}-x=\frac{301}{101}\)
\(\frac{200}{101}-x=\frac{301}{101}\)
\(\Rightarrow x=\frac{301}{101}-\frac{200}{101}=1\)
Ta có : \(\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+.....+\frac{4}{99.101}-x-\frac{200}{101}=1\)
\(\Rightarrow\)\(\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+.....+\frac{4}{99.101}=1+\frac{200}{101}+x\)
=> \(\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+.....+\frac{4}{99.101}=\frac{301}{101}+x\)
=> \(2\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{99.101}\right)=\frac{301}{101}+x\)
=> \(2\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+......+\frac{1}{99}-\frac{1}{101}\right)=\frac{301}{101}+x\)
=> \(2\left(1-\frac{1}{101}\right)=\frac{301}{101}+x\)
=> \(2.\frac{100}{101}=\frac{301}{101}+x\)
=> \(\frac{200}{101}=\frac{301}{101}+x\)
\(\Rightarrow x=\frac{301}{101}-\frac{200}{101}=1\)
\(a,x-7\frac{5}{8}=1\frac{1}{4}\)
=> \(x-\frac{61}{8}=\frac{5}{4}\)
=> \(x=\frac{5}{4}+\frac{61}{8}\)
=> \(x=\frac{10}{8}+\frac{61}{8}=\frac{71}{8}=8\frac{7}{8}\)
\(b,x+7\frac{5}{8}=9\frac{1}{4}\)
=> \(x+\frac{43}{5}=\frac{37}{4}\)
=> \(x=\frac{37}{4}-\frac{43}{5}=\frac{13}{20}\)
\(c,\left[x-7\frac{5}{8}\right]:\frac{1}{2}=3\)
=> \(\left[x-\frac{61}{8}\right]=3\cdot\frac{1}{2}\)
=> \(\left[x-\frac{61}{8}\right]=\frac{3}{2}\)
=> \(x-\frac{61}{8}=\frac{3}{2}\)
=> \(x=\frac{3}{2}+\frac{61}{8}=\frac{12}{8}+\frac{61}{8}=\frac{73}{8}=9\frac{1}{8}\)
d, \(\frac{x}{1\cdot3}+\frac{x}{3\cdot5}+\frac{x}{5\cdot7}+...+\frac{x}{97\cdot99}=99\)
=> \(\frac{x}{2}\left[\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\right]=99\)
=> \(\frac{x}{2}\left[1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right]=99\)
=> \(\frac{x}{2}\left[1-\frac{1}{99}\right]=99\)
=> \(\frac{x}{2}\cdot\frac{98}{99}=99\)
=> \(\frac{98x}{198}=99\)
=> 98x = 99 . 198
=> 98x = 19602
=> x = 19602 : 98 = 9801/49
a) \(x-7\frac{5}{8}=1\frac{1}{4}\)
=> \(x=\frac{5}{4}+\frac{61}{8}\)
=> \(x=\frac{71}{8}\)
b) \(x+7\frac{5}{8}=9\frac{1}{4}\)
=> \(x=\frac{37}{4}-\frac{61}{8}\)
=> \(x=\frac{13}{8}\)
c) \(\left(x-7\frac{5}{8}\right):\frac{1}{2}=3\)
=> \(x-\frac{61}{8}=3.\frac{1}{2}\)
=> \(x-\frac{61}{8}=\frac{3}{2}\)
=> \(x=\frac{3}{2}+\frac{61}{8}\)
=> \(x=\frac{73}{8}\)
d) \(\frac{x}{1.3}+\frac{x}{3.5}+...+\frac{x}{97.99}=99\)
=> \(x.\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\right)=99\)
=> \(\frac{1}{2}x\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{97}-\frac{1}{99}\right)=99\)
=> \(x\left(1-\frac{1}{99}\right)=99:\frac{1}{2}\)
=> \(x.\frac{98}{99}=198\)
=> \(x=198:\frac{98}{99}=\frac{9801}{49}\)
mình cần gấp trong hôm nay mong mọi người giúp mình !!!!!!!
\(\frac{1}{1\times3}+\frac{1}{3\times5}+...+\frac{1}{x\times\left(x+2\right)}=\frac{19}{40}\)
\(\frac{1}{2}\left(\frac{2}{1\times3}+\frac{2}{3\times5}+...+\frac{2}{x\times\left(x+2\right)}\right)=\frac{19}{40}\)
\(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{19}{40}\)
\(1-\frac{1}{x+2}=\frac{19}{40}\times2\)
\(\frac{x+1}{x+2}=\frac{19}{20}\Rightarrow x=18\)