K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2018

\(B=\frac{1}{19}+\frac{9}{19.29}+\frac{9}{29.39}+...+\frac{9}{1999.2009}\)

\(=\frac{9}{9.19}+\frac{9}{19.29}+\frac{9}{29.39}+...+\frac{9}{1999.2009}\)

\(=\frac{9}{10}\left(\frac{1}{9}-\frac{1}{19}+\frac{1}{19}-\frac{1}{29}+\frac{1}{29}-\frac{1}{39}+...+\frac{1}{1999}-\frac{1}{2009}\right)\)

\(=\frac{9}{10}\left(\frac{1}{9}-\frac{1}{2009}\right)\)

\(=\frac{200}{2009}\)

5 tháng 9 2018

Gọi \(B=\frac{9}{19}+A\)

\(A=\frac{9}{19\cdot29}+\frac{9}{29\cdot39}+...+\frac{9}{1999\cdot2009}\)

\(\frac{A}{9}=\frac{1}{19\cdot29}+\frac{1}{29\cdot39}+...+\frac{1}{1999\cdot2009}\)

\(\frac{A\cdot10}{9}=\frac{10}{19+29}+\frac{10}{29\cdot39}+...+\frac{10}{1999\cdot2009}\)

\(\frac{A\cdot10}{9}=\frac{1}{19}-\frac{1}{29}+\frac{1}{29}-\frac{1}{39}+...+\frac{1}{1999}-\frac{1}{2009}\)

\(\frac{A\cdot10}{9}=\frac{1}{19}-\frac{1}{2009}\)

\(A=\frac{1791}{38171}\)

\(\Rightarrow B=\frac{1}{19}+\frac{1791}{38171}\)

\(\Rightarrow B=\frac{200}{2009}\)

17 tháng 2 2017

\(A=\frac{1}{19}+\frac{9}{19.29}+...+\frac{9}{1999.2009}\)

\(=\frac{1}{19}+\frac{9}{10}\left(\frac{1}{19}-\frac{1}{29}+...+\frac{1}{1999}-\frac{1}{2009}\right)\)

\(=\frac{1}{19}+\frac{9}{10}\left(\frac{1}{19}-\frac{1}{2009}\right)\)

đến đay bn tự tính nha

17 tháng 2 2017

cảm ơn nhg mình lm đc rùi

Sửa đề: \(\dfrac{1}{1.9}\rightarrow\dfrac{9}{9.19}\)

Giải:

\(N=\dfrac{9}{9.19}+\dfrac{9}{19.29}+\dfrac{9}{29.39}+...+\dfrac{9}{2019.2029}\) 

\(N=\dfrac{9}{10}.\left(\dfrac{10}{9.19}+\dfrac{10}{19.29}+\dfrac{10}{29.39}+...+\dfrac{10}{2019.2029}\right)\) 

\(N=\dfrac{9}{10}.\left(\dfrac{1}{9}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{29}+\dfrac{1}{29}-\dfrac{1}{39}+...+\dfrac{1}{2019}-\dfrac{1}{2029}\right)\) 

\(N=\dfrac{9}{10}.\left(\dfrac{1}{9}-\dfrac{1}{2029}\right)\) 

\(N=\dfrac{9}{10}.\dfrac{2020}{18261}\) 

\(N=\dfrac{202}{2029}\)

1 tháng 1 2016

\(\frac{2000}{2009}\)

1 tháng 1 2016

\(\frac{200}{2009}\)tính lộn

25 tháng 7 2018

\(B=\frac{1}{19}+\frac{9}{19.29}+\frac{9}{29.39}+...+\frac{9}{1999.2009}\)

\(=9\left(\frac{1}{9.19}+\frac{1}{19.29}+...+\frac{1}{1999.2009}\right)=\frac{9}{10}\left(\frac{10}{9.19}+\frac{10}{19.29}+...+\frac{10}{1999.2009}\right)\)

\(=\frac{9}{10}\left(\frac{1}{9}-\frac{1}{19}+\frac{1}{19}-\frac{1}{29}+...+\frac{1}{1999}-\frac{1}{2009}\right)=\frac{9}{10}\left(\frac{1}{9}-\frac{1}{2009}\right)=\frac{9}{10}\cdot\frac{2000}{18081}=\frac{200}{2009}\)

1 tháng 9 2018

Ta có: \(B=\frac{1}{19}+\frac{9}{19.29}+\frac{9}{29.39}+...+\frac{9}{1999.2009}\)

\(B=9\left(\frac{1}{9.19}+\frac{1}{19.29}+...+\frac{1}{1999.2009}\right)\)

\(B=\frac{9}{10}\left(\frac{10}{9.19}+\frac{10}{19.29}+...+\frac{10}{1999.2009}\right)\)

\(B=\frac{9}{10}\left(\frac{1}{9}-\frac{1}{19}+\frac{1}{19}-\frac{1}{29}+...+\frac{1}{1999}-\frac{1}{2009}\right)\)

\(B=\frac{9}{10}\left(\frac{1}{9}-\frac{1}{2009}\right)\)

\(B=\frac{9}{10}.\frac{2000}{18081}\)

\(B=\frac{200}{2009}\)

Vậy \(B=\frac{200}{2009}\)

25 tháng 2 2017

Ta có: \(A=\frac{1}{19}+\frac{9}{19.29}+\frac{9}{29.39}+...+\frac{9}{1999.2009}\)

\(\Rightarrow A=\frac{1}{19}+\frac{9}{10}\left(\frac{10}{19.29}+\frac{10}{29.39}+...+\frac{10}{1999.2009}\right)\)

\(\Rightarrow A=\frac{1}{19}+\frac{9}{10}\left(\frac{1}{19}-\frac{1}{29}+\frac{1}{29}-\frac{1}{39}+...+\frac{1}{1999}-\frac{1}{2009}\right)\)

\(\Rightarrow A=\frac{1}{19}+\frac{9}{10}\left(\frac{1}{19}-\frac{1}{2009}\right)\)

\(\Rightarrow A=\frac{1}{19}+\frac{9}{10}.\frac{1990}{38171}\)

\(\Rightarrow A=\frac{1}{19}+\frac{1791}{38171}\)

\(\Rightarrow A=\frac{200}{2009}\)

Vậy \(A=\frac{200}{2009}.\)

21 tháng 11 2023

loading...