Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt A với biểu thức trên
A=\(\frac{1}{3x6}\)+\(\frac{1}{6x9}\)+......+\(\frac{1}{30x33}\)
Nhân cả 2 vế với 3 ta có
A x 3 = \(\frac{3}{3x6}\)+....+\(\frac{3}{30x33}\)
A x 3 = \(\frac{1}{3}\)-\(\frac{1}{6}\)+....+\(\frac{1}{30}\)-\(\frac{1}{33}\)
A x 3 = \(\frac{1}{3}\)-\(\frac{1}{33}\)
A x 3 = \(\frac{10}{33}\)
A = \(\frac{10}{33}\):3
A= \(\frac{10}{99}\)
1/6*3+1/6*9+1/9*12+........+1/30*33
=(1/3-1/6)+(1/6-1/9)+(1/9-1/12)+........+(1/30-1/33)
=1/3-1/6+1/6-1/9+1/9-1/12+........+1/30-1/33
=1/3-1/33
=10/33
nho k cho mink nha
CHUC BAN HOC GIOI !
Gợi ý: 18 = 3.6
54 = 6.9
108 = 9.12
.............
990 = 30.33
Gấp 3 lần R rồi dùng sai phân hữu hạn.
Tự làm tiếp nhé!!!
\(\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)
=\(\frac{1}{3}.\left(\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.12}+...+\frac{1}{30.33}\right)\)
=\(\frac{1}{3}.\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{30}-\frac{1}{33}\right)\)
=\(\frac{1}{3}.\left(\frac{1}{3}-\frac{1}{33}\right)\)
=\(\frac{1}{3}.\frac{10}{33}\)
=\(\frac{10}{99}\)
1/18+1/54+1/108+...+1/990
=1/3 x 6+1/6 x 9+1/9 x 12+...+1/30 x 33
=(1/3-1/6)+(1/6-1/9)+...+1(/30-1/33)
=1/3-1/6+1/6-1/9+...+1/30-1/33
=1/3-1/33
=10/33
giải
1/18 + 1/54 +1/108 + ......+ 1/990
ta tách mẫu số ra thành 1 tích của 2 số :
1/3x6 + 1/6x9 + 1/9x12 +........ + 1/30x33
theo quy tắc ta có : nếu tử nhân với 3 thì mẩu cũng sẽ nhân với 3 :
1x3/3x6x3 +1x3/6x9x3 + 1x3/9x11x3 + .........+ 1x3/30x33x3
= 1/3 x ( 3/3x6 + 3/6x9 + 3/9x11 +.....+3/30x33
= 1/3 x ( 1/3 - 1/33 )
= 1/3 x 10/33
=10/99
Mình giải hơi khó hiểu 1 chút nha
1/18+1/54+1/108+...+1/990
=1/3*6+1/6*9+1/9*12+...+1/30*33\
=(1/3-1/6)+(1/6-1/9)+...+1(/30-1/33)
=1/3-1/6+1/6-1/9+...+1/30-1/33
=1/3-1/33
=10/33
\(\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)
\(=\frac{1}{3\cdot6}+\frac{1}{6\cdot9}+\frac{1}{9\cdot12}+...+\frac{1}{30\cdot33}\)
\(=\frac{1}{3}\left(\frac{3}{3\cdot6}+\frac{3}{6\cdot9}+\frac{3}{9\cdot12}+...+\frac{3}{30\cdot33}\right)\)
\(=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{30}-\frac{1}{33}\right)\)
\(=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{33}\right)\)
\(=\frac{1}{3}\cdot\frac{10}{33}=\frac{10}{99}\)
\(\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)
\(=\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+...+\frac{1}{30.33}\)
\(=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{30}-\frac{1}{33}\right)\)
\(=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{33}\right)\)
\(=\frac{1}{3}.\frac{10}{33}\)
\(=\frac{10}{99}\)
\(\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+....+\frac{1}{990}\)
\(=\frac{1}{3\times6}+\frac{1}{6\times9}+\frac{1}{9\times11}+....+\frac{1}{30\times30}\)
\(=\frac{1}{3}\times\left(\frac{3}{3\times6}+\frac{3}{6\times9}+....+\frac{3}{30\times33}\right)\)
\(=\frac{1}{3}\times\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+....+\frac{1}{30}-\frac{1}{33}\right)\)
\(=\frac{1}{3}\times\left(\frac{1}{3}-\frac{1}{33}\right)=\frac{1}{3}\times\frac{10}{33}=\frac{10}{99}\)
\(\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)
\(=\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+...+\frac{1}{30.33}\)
\(=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}+...+\frac{1}{30}-\frac{1}{33}\right)\)
\(=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{33}\right)=\frac{1}{3}.\frac{10}{33}=\frac{10}{99}\)