\(\dfrac{1}{3y^2-10y}=\dfrac{6y}{9y^2-1}+\dfrac{2}{1-3y}\)

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2017

\(\dfrac{1}{3y^2-10y}=\dfrac{6y}{9y^2-1}+\dfrac{2}{1-3y}\)

\(\Leftrightarrow\dfrac{1}{3y^2-10y}=\dfrac{6y-2\left(3y+1\right)}{\left(3y-1\right)\left(3y+1\right)}\)

\(\Leftrightarrow\dfrac{1}{3y^2-10y}=\dfrac{-2}{9y^2-1}\)

\(\Leftrightarrow9y^2-1=-6y^2+20y\)

\(\Leftrightarrow15y^2-20y-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=\dfrac{10+\sqrt{115}}{15}\\y=\dfrac{10-\sqrt{115}}{15}\end{matrix}\right.\)

10 tháng 2 2018

d. ĐKXĐ: x khác 1, x khác 3

\(\dfrac{x+5}{x-1}=\dfrac{x+1}{\left(x-3\right)}-\dfrac{8}{x^2-4x+3}\)

\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+5\right)}{\left(x-1\right)\left(x-3\right)}=\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x-3\right)}-\dfrac{8}{\left(x-1\right)\left(x-3\right)}\) \(\Leftrightarrow x^2+2x-15=x^2-1-8\)

\(\Leftrightarrow2x-15+1+8=0\)

\(\Leftrightarrow2x-6=0\)

\(\Leftrightarrow x=3\) (loại)

Vậy pt vô nghiệm

11 tháng 1 2018

sory doan cuoi minh lam sai minh lam lai nhe

pt<=>1/(y-1)(y-2) + 1/(y-2)(y-3) + 1/(y-3)(y-4) + 1(y-4)(y-5)=1/15

=>1/(y-1) -1/(y-2)+1/(y-2)-1/(y-3)+1/(y-3)-1/(y-4)+1/(y-4)-1/(y-5)=1/15

=>1/(y-1) - 1/(y-5)=1/15

=>4/(y-1)(y-5)=1/15

=> (y-1)(y-5)=60

=> y2-6y+5-60=0

=>y2-6y-55=0

=> (y-11)(y+5)=0

=>y=11 hoac y=-5

11 tháng 1 2018

pt<=> 1/(y-1)(y-2) + 1/(y-2)(y-3) + 1/(y-3)(y-4) + 1/(y-4)(y-5)=1/15

=>1/(y-1)-1/(y-2)+1/(y-2)-1/(y-3)+1/(y-3)-1/(y-4)+1/(y-4)-1/(y-5)=1/15

=>1/(y-1)-1/(y-5)=1/15

=>(y-1)(y-5)=-4.15=-60

=>y2-6y+65=0 k tim dc nghiem

3 tháng 8 2017

ĐK \(y\ne\left\{-\frac{1}{3};\frac{1}{3};3\right\}\)

a. Ta có \(\frac{1}{3y^2-10y+3}=\frac{6y}{9y^2-1}+\frac{2}{1-3y}\)

\(\frac{\Leftrightarrow1}{\left(y-3\right)\left(3y-1\right)}=\frac{6y}{\left(3y+1\right)\left(3y-1\right)}-\frac{2}{3y-1}\)

\(\Leftrightarrow\frac{3y+1}{\left(3y+1\right)\left(3y-1\right)\left(y-3\right)}=\frac{6y\left(y-3\right)-2\left(y-3\right)\left(3y+1\right)}{\left(3y+1\right)\left(3y-1\right)\left(y-3\right)}\)

\(\Leftrightarrow3y+1=-2y+6\Leftrightarrow5y=5\Rightarrow y=1\)

Vậy \(y=1\)

b. Pt \(\Leftrightarrow x-\frac{\frac{x-3}{4}}{2}=3-\frac{\frac{x-3}{6}}{2}\Leftrightarrow x-\frac{x-3}{8}=3-\frac{x-3}{12}\)

\(\Leftrightarrow\left(x-3\right)-\frac{x-3}{8}-\frac{x-3}{12}=0\Leftrightarrow\frac{19}{24}\left(x-3\right)=0\Leftrightarrow x=3\)

Vậy \(x=3\)

Tự tìm Đkxđ nha.

1/(3y^2 - 10y +3) = 6y/(9y^2 - 1) + 2/(1 - 3y)

=>1/(3y^2 -9y -y +3)=6y/(3y- 1)(3y+ 1)- 2(3y+ 1)/(3y - 1)(3y+ 1)

=>1/(y- 3)(3y -1)=-1/(3y -1)(3y +1)

=>(3y+ 1)/(y- 3)(3y -1)(3y+ 1)=(y -3)/(3y- 1)(3y +1)

=>3y+ 1= y- 3

Đến đây tự làm nha

21 tháng 2 2019

a)ĐKXĐ:\(\hept{\begin{cases}y\ne3\\y\ne\frac{1}{3}\\y\ne-\frac{1}{3}\end{cases}}\)

\(\frac{1}{3y^2-10y+3}=\frac{6y}{9y^2-1}+\frac{2}{1-3y}\)

\(\Leftrightarrow\frac{1}{\left(y-3\right)\left(3y-1\right)}=\frac{6y}{\left(3y-1\right)\left(3y+1\right)}-\frac{2}{3y-1}\)

\(\Leftrightarrow\frac{3y+1}{\left(y-3\right)\left(3y-1\right)\left(3y+1\right)}=\frac{6y\left(y-3\right)}{\left(3y-1\right)\left(3y+1\right)\left(y-3\right)}-\frac{2\left(3y+1\right)\left(y-3\right)}{\left(3y-1\right)\left(3y+1\right)\left(y-3\right)}\)

\(\Rightarrow6y^2-18y-2\left(3y^2-9y+y-3\right)-3y-1=0\)

\(\Leftrightarrow6y^2-18y-6y^2+18y-2y+6-3y-1=0\)

\(\Leftrightarrow5-5y=0\)

\(\Leftrightarrow5y=5\Leftrightarrow y=1\)(t/m ĐKXĐ)

Vậy....

9 tháng 12 2018

Xét:

\(\left(3x-2y\right)\left(25x^2-9y^2\right)\)

\(=\left(3x-2y\right)\left(5x-3y\right)\left(5x+3y\right)\)

\(=\left(5x-3y\right)\left(15x^2+9xy-10xy-6y^2\right)\)

\(=\left(5x-3y\right)\left(15x^2-xy-6y^2\right)\)

Từ đó dễ dàng suy ra tích chéo = nhau => đpcm

9 tháng 12 2018

ta có : \(VP=\dfrac{15x^2-xy-6y^2}{25x^2-9y^2}=\dfrac{\left(3x-2y\right)\left(5x+3y\right)}{\left(5x-3y\right)\left(5x+3y\right)}=\dfrac{3x-2y}{5x-3y}=VT\)

b: \(=\dfrac{-1}{x\left(5x-1\right)}-\dfrac{25x-15}{\left(5x-1\right)\left(5x+1\right)}\)

\(=\dfrac{-5x-1-25x^2+15x}{x\left(5x-1\right)\left(5x+1\right)}\)

\(=\dfrac{-25x^2-10x-1}{x\left(5x-1\right)\left(5x+1\right)}=\dfrac{-\left(5x+1\right)}{x\left(5x-1\right)}\)

c: \(=\dfrac{x+9y}{\left(x-3y\right)\left(x+3y\right)}-\dfrac{3y}{x\left(x-3y\right)}\)

\(=\dfrac{x^2+9xy-3xy-9y^2}{x\left(x-3y\right)\left(x+3y\right)}\)

\(=\dfrac{x^2+6xy-9y^2}{x\left(x-3y\right)\left(x+3y\right)}\)

d: \(=\dfrac{3x+1}{\left(x-1\right)^2}-\dfrac{1}{x+1}+\dfrac{x+3}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{3x^2+4x+1-x^2+2x-1+x^2+2x-3}{\left(x-1\right)^2\cdot\left(x+1\right)}\)

\(=\dfrac{3x^2+8x-3}{\left(x-1\right)^2\cdot\left(x+1\right)}=\dfrac{3x^2+9x-x-3}{\left(x-1\right)^2\cdot\left(x+1\right)}\)

\(=\dfrac{3x+1}{\left(x-1\right)\left(x+1\right)}\)

24 tháng 12 2017

\(\dfrac{x+9y}{x^2-9y^2}-\dfrac{3y}{x^2+3xy}\)

\(=\dfrac{x+9y}{\left(x-3y\right)\left(x+3y\right)}-\dfrac{3y}{x\left(x+3y\right)}\)

\(=\dfrac{x\left(x+9y\right)-3y\left(x-3y\right)}{x\left(x-3y\right)\left(x+3y\right)}\)

\(=\dfrac{x^2-6xy+9y^2}{x\left(x-3y\right)\left(x+3y\right)}\)

\(=\dfrac{\left(x-3y\right)^2}{x\left(x-3y\right)\left(x+3y\right)}\)

\(=\dfrac{x-3y}{x\left(x+3y\right)}\)

a: \(=\dfrac{1-2x+3+2y+2y-4}{6x^3y}=\dfrac{-2x+4y}{6x^3y}=\dfrac{-2\left(x-2y\right)}{6x^3y}=\dfrac{-x+2y}{3x^3y}\)

b: \(=\dfrac{x^2-2+2-x}{x\left(x-1\right)^2}=\dfrac{x\left(x-1\right)}{x\left(x-1\right)^2}=\dfrac{1}{x-1}\)

c: \(=\dfrac{3x+1+x^6-3x}{x^2-3x+1}\)

\(=\dfrac{x^6+1}{x^2-3x+1}\)

d: \(=\dfrac{x^2+38x+4+3x^2-4x-2}{2x^2+17x+1}\)

\(=\dfrac{4x^2+34x+2}{2x^2+17x+1}=2\)

21 tháng 4 2017

Giải bài 33 trang 50 Toán 8 Tập 1 | Giải bài tập Toán 8