Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có (ak+bk)\(⋮\)(a+b) với k = 2t+1, t\(\in\)N, a2+b2\(\ne\)0
A=1k+2k+...+(n-1)k+nk ; 2B=2(1+2+...+n)=n(n+1)
2A=[(1k+nk)+(2k+(n-1)k+... ]\(⋮\)(n+1)
2A=2[(1k+(n-1)k)+(2k+(n-2)k)+...+nk ] \(⋮\)n
Vậy A \(⋮\)B
Nó ko có quy luật gì hết nên phải tính hết ra cô giáo tớ bảo thế.
a. \(1^3+2^3=1+8=9=3^2\) là số chính phương
b. \(1^3+2^3+3^3=1+8+27=36=6^2\) là số chính phương
c. \(1^3+2^3+3^3+4^3=1+8+27+64=100=10^2\) là số chính phương
\(S=\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{50-49}{49.50}=1-\frac{1}{2}+\frac{1}{2}-...-\frac{1}{50}=1-\frac{1}{50}< 1\)
S<A= 1/1.2+1/2.3+...+1/40.50 => A=1-1/2+1/2-1/3+1/3-...+1/49-1/50
=> A=1-1/50 <1
Mà S<A<1 => S<1 =>(ĐPCM)
V )x+(x+1)+(x+2)+....+(x+30)=1240
31 . x + (1 + 2 + 3 + 4 +...+ 29 + 30) = 1240
31 . x + 31.15 = 1240
31 . x = 1240 - 31.15
31 . x = 775
x = 775 : 31
x = 25
Ta có:
\(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\)
\(\Rightarrow2A=2.\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\right)\)
\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)
\(\Rightarrow A=2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\right)\)
\(=1-\frac{1}{2^{100}}\)
Nguyễn Thái Tuán thông minh ghê :hanclap
\(\frac{2^{100}-1}{2^{100}}=1\):troll
số nhỏ vậy bạn