Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Q = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n.\left(n+1\right)}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(=1-\frac{1}{n+1}\)
Vì n là số nguyên khác 0; - 1
=> \(\frac{1}{n+1}\)không là số nguyên
=> \(Q=1-\frac{1}{n+1}\)không là số nguyên
Nguyễn Linh Chi :) trường con lại bắt trình bày rõ ràng thế này ; nếu bạn Nguyen duc anh cũng cần cách này ;
\(\frac{1}{1.2}=\frac{2-1}{1.2}=\frac{2}{2}-\frac{1}{2}=1-\frac{1}{2}\)
\(\frac{1}{2.3}=\frac{3-2}{2.3}=\frac{3}{2.3}-\frac{2}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{3.4}=\frac{4-3}{3.4}=\frac{4}{3.4}-\frac{3}{3.4}=\frac{1}{3}-\frac{1}{4}\)
.....
\(\frac{1}{n\left(n+1\right)}=\frac{\left(n+1\right)-n}{n\left(n+1\right)}=\frac{\left(n+1\right)}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
rồi bắt đầu làm như cô Nguyễn Linh Chi
b, (x2 - 1)(x2 - 4) < 0
=> x2 - 1 và x2 - 4 khác dấu
Mà x2- 1 > x2 - 4 => x2 - 1 dương; x2 -4 là số âm
=> 0 < x2 < 4
=> x2 = 1 (Vì x2 là số chính phương)
=> x = 1
Vậy.....
a, M = 1.2 + 2.3 +...+ 99.100
=> 3M = 1.2.3 + 2.3.(4 - 1) +...+ 99.100.(101 - 98)
=> 3M = 1.2.3 + 2.3.4 - 1.2.3 +...+ 99.100.101 - 98.99.100
Triệt tiêu các hiệu bằng 0, ta còn:
3M = 99.100.101
=> 3M =999900
=> M = 333300
bài 1:
B = 1 + (2 + 3 + 4 + ... + 98 + 99).
Ta thấy tổng trong ngoặc gồm 98 số hạng, nếu chia thành các cặp ta có 49 cặp nên tổng đó là:
(2 + 99) + (3 + 98) + ... + (51 + 50) = 49.101 = 4949
Khi đó B = 1 + 4949 = 4950
bài 2:
Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó:
Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a1 = 1.2.3 - 0.1.2
a2 = 2.3 → 3a2 = 2.3.3 → 3a2 = 2.3.4 - 1.2.3
a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
…………………..
an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)
Cộng từng vế của các đẳng thức trên ta có:
3(a1 + a2 + … + an) = n(n + 1)(n + 2)
Bài 1: Tính B = 1 + 2 + 3 + ... + 98 + 99
=> B= \((99+1).99:2=4950\)
Vậy .....
Bài 2. Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)
=> 3A= 1.2.3+2.3.3+3.4.3+....+n.(n+1).3
=> 3A= 1.2.3+2.3.(4-1)+3.4.(5-2)+....+n.(n+1).\([\left(n+3\right).\left(n-1\right)]\)
=>3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+....+n.(n+1).(n+3)-(n-1) .n.(n+1)
=>3A=n.(n+1).(n+3)
=>A=\(\frac{n.\left(n+1\right).\left(n+3\right)}{3}\)
Vậy ...
Chúc bạn hok tốt