
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1/2+1/3+1/4+.....+1/63>1/31+.....1/31(62 số hạng 1/31)
hay 1/2+1/3+1/4+.......+1/63>62x1/31
nên 1/2+1/3+1/4+......+1/63>2



1=1
1/2+1/3
=1/(1+1)+1/(1+2)
<2/(1+1)=2/2=1
1/4+1/5+1/6+1/7
=1/(3+1)+1/(3+2)+1/(3+3)+1/(3+4)
<4/(3+1)=4/4=1
1 / 8 +1/9 ... +1/15
=1/(7+1)+1/(7+2)+…+1/(7+8)
<8/(7+1)=8/8=1
1/16+1/17+..+1/31
=1/(15+1)+1/(15+2)+….+1/(15+16)
<16/(15+1)=16/16=1
1/32+1/33+…+1/63
=1/(31=1)+1/(32+1)+…+1/(31+32)
<32/(31+1)=32/32=1
=>1 / 2 + 1 / 3+…+1/63<1+1+1+1+1+1
=>1 / 2 + 1 / 3+…+1/63<6 (đpcm)
đúng cái

Đặt \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{63}>\dfrac{1}{31}+\dfrac{1}{31}+\dfrac{1}{31}+...+\dfrac{1}{31}\)(có 62 số hạng \(\dfrac{1}{31}\))
\(\Rightarrow\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{63}>\dfrac{1}{31}\times62\)
\(\Rightarrow\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{63}>2\)
\(Vậy\) \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{63}>2\left(đpcm\right)\)

1/2+1/3+1/4+...+1/63>1/31+1/31+1/31...+1/31( 62 số hạng 31)
hay 1/2+1/3+1/4+...+1/63>62 x 1/31
nên 1/2+1/3+1/4+...+1/63>2(dpcm)
k ủng hộ nha



đặt tổng trên là A rồi lấy 2A-A