Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1 * 2 + 2 * 3 + 3 * 4 + ...... + 28 * 29 + 29 * 30
3S = 1 x 2 x 3 - 1 x 2 x 3 + 2 x 3 x 4 - 2 x 3 x 4 + .............. + 29 x 30 x 31
3S = 29 x 30 x 31
S = 29 x 30 x 31 : 3 = 8990
Ta có : S = 1.2 + 2.3 + 3.4 + ..... + 28.29 + 29.30
<=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ...... + 29.30.31
<=> 3S = 29.30.31
<=> S = 29.30.31 / 3 = 8990
Chúc học tốt nhé !
A = 1x2 + 2x3 + 3x4 + ……….. + 29 x30
A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + ……… + 29x30x3 Ax3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) +………… 29x30x(31-28)
Ax3 = 1x2x3 + 2x3x4 -1x2x3 + 3x4x5 – 2x3x4 +……..+ 29x30x31 – 28x29x30 Ax3 = 29x30x31
A = 29x30x31 : 3
A = 290x31
A = 1x2 + 2x3 + 3x4 + ……….. + 29 x30
A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + ……… + 29x30x3
Ax3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) +………… 29x30x(31-28)
Ax3 = 1x2x3 + 2x3x4 -1x2x3 + 3x4x5 – 2x3x4 +……..+ 29x30x31 – 28x29x30
Ax3 = 29x30x31
A = 29x30x31 : 3
A = 290x31
a)\(A=\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+\frac{2}{24}+\frac{2}{48}+\frac{2}{96}+\frac{2}{192}\)
\(\frac{1}{2}xA=\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\)
\(\frac{1}{4}xA=\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}+\frac{1}{384}\)
\(\frac{1}{4}xA-\frac{1}{2}xA=\frac{1}{3}-\frac{1}{384}\)
\(\frac{1}{4}xA=\frac{127}{384}\)
\(A=\frac{127}{384}:\frac{1}{4}\)
\(A=\frac{127}{96}\)
\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{90}\)
\(=9-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)
\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=9-\left(1-\frac{1}{10}\right)\)
\(=9-\frac{9}{10}=\frac{81}{10}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{29\cdot30}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{29}-\frac{1}{30}\)
\(=1-\frac{1}{30}\)
\(=\frac{29}{30}\)