Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=>2A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+....+\dfrac{1}{2^{101}}\)
\(=>2A-A=\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{101}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+....+\dfrac{1}{2^{100}}\right)\)
\(=>A=\dfrac{1}{2^{101}}-\dfrac{1}{2}\)
\(A=1+3+3^2+3^3+...+3^{99}\)
\(\Rightarrow3A=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3A-A=2A=\left(3+3^2+3^3+...+3^{100}\right)-\left(\text{}\text{}\text{}1+3^2+3^3+...+3^{99}\right)\)
\(\Rightarrow2A=3^{100}-1\Rightarrow A=\frac{3^{100}-1}{2}\)
a/ Đặt :
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+.........+\dfrac{1}{3^{50}}\)
\(\Leftrightarrow3A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+.......+\dfrac{1}{3^{49}}\)
\(\Leftrightarrow3A-A=\left(1+\dfrac{1}{3}+....+\dfrac{1}{3^{49}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+....+\dfrac{1}{3^{50}}\right)\)
\(\Leftrightarrow2A=1-\dfrac{1}{3^{50}}\)
còn sao nx thì mk chịu =.=
Với mọi \(x\in Z\) ta có:
\(1+2+3+..+n=\frac{n\left(n+1\right)}{2}\)
=> \(\frac{1}{1+2+3+..+n}=\frac{2}{n\left(n+1\right)}=2\left[\frac{1}{n\left(n+1\right)}\right]=2\left(\frac{1}{n}-\frac{1}{n+1}\right)\)
Có:
\(\frac{1}{1+2}=2\left(\frac{1}{2}-\frac{1}{3}\right)\)
\(\frac{1}{1+2+3}=2\left(\frac{1}{3}-\frac{1}{4}\right)\)
.......................................................
\(\frac{1}{1+2+3+4+...+99}=2\left(\frac{1}{99}-\frac{1}{100}\right)\)
Nên:
\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+..+99}+\frac{1}{50}\)
\(=2\left(\frac{1}{2}-\frac{1}{3}\right)+2\left(\frac{1}{3}-\frac{1}{4}\right)+...+2\left(\frac{1}{99}-\frac{1}{100}\right)+\frac{1}{50}\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)+\frac{1}{50}\)
\(=2\left(\frac{1}{2}-\frac{1}{100}\right)+\frac{1}{50}=2\cdot\frac{49}{100}+\frac{1}{50}=\frac{49}{50}+\frac{1}{50}=1\)
Cảm ơn bạn (chị ) nhiều !
Công nhận chị học giỏi thật đấy !
(1/2+1/3+1/4+...+1/100)/(99/1+98/2+97/3+...+1/99)
=(1/2+1/3+1/4+...+1/100)/(1+100/2+100/3+100/4+....+100/99)
=(1/2+1/3+1/4+...+1/100)/100*(1/100+1/99+1/98+...+1/4+1/3+1/2)
=1/100
chỗ 99/1+99/2+99/3+...+1/99 hình như đề bài sai đề bài đúng hình như là trên đã sửa rồi
\(\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{50^2}-1\right)\)
\(=-\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{50^2}\right)\)
\(=-\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}....\frac{50^2-1}{50^2}\)
\(=-\frac{\left(2-1\right)\left(2+1\right)}{2^2}.\frac{\left(3-1\right)\left(3+1\right)}{3^2}.\frac{\left(4-1\right)\left(4+1\right)}{4^2}...\frac{\left(50-1\right)\left(50+1\right)}{50^2}\)
\(=-\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}...\frac{49.51}{50}\)
\(=-\frac{1.2.3...49}{2.3.4...50}.\frac{3.4.5...51}{2.3.4...50}\)
\(=-\frac{1}{50}.\frac{51}{2}=-\frac{51}{100}\)
\(B=\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^3}-\dfrac{1}{2^4}+...+\dfrac{1}{2^{99}}-\dfrac{1}{2^{100}}\)
\(\Rightarrow2B=1-\dfrac{1}{2}+\dfrac{1}{2^2}-\dfrac{1}{2^3}+\dfrac{1}{2^4}-...-\dfrac{1}{2^{99}}\)
\(\Rightarrow2B+B=3B=1-\dfrac{1}{2^{100}}\)
\(\Rightarrow B=\dfrac{1}{3}-\dfrac{1}{2^{100}.3}\)
a, Ta có :\(A=\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}+\dfrac{1}{2^{50}}\\ \Rightarrow2A=1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}\\ \Rightarrow2A-A=\left(1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}\right)-\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{50}}\right)\\ \Rightarrow A=1-\dfrac{1}{2^{50}}< 1\\ \Rightarrow A< 1\) Vậy \(A< 1\)
b, Ta có :
\(B=\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\\ \Rightarrow3B=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\\ \Rightarrow3B-B=\left(1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\right)\\ \Rightarrow2B=1-\dfrac{1}{3^{100}}< 1\\ \Rightarrow B< \dfrac{1}{2}\)Vậy \(B< \dfrac{1}{2}\)
c, Ta có :
\(C=\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{1000}}\\ \Rightarrow4C=1+\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{999}}\\\Rightarrow4C-C=\left(1+\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{999}}\right)-\left(\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{1000}}\right)\\ \Rightarrow3C=1-\dfrac{1}{4^{1000}}< 1\\ \Rightarrow C< \dfrac{1}{3}\)Vậy \(C< \dfrac{1}{3}\)
= 2*(1/1 - 1/2 + 1/2 - ...... - 1/100) + 1/50
= 2*(1 - 1/100) + 1/50
= 2*99/100 + 1/50
= 99/50 + 1/50 = 2
= 2*(1/1 - 1/2 + 1/2 - ...... - 1/100) + 1/50
= 2*(1 - 1/100) + 1/50
= 2*99/100 + 1/50
= 99/50 + 1/50 = 2