Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{2021}\right)\)
\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{2022}{2021}\)
\(=\frac{2022}{2}\)
\(=1011\)
A= 1* (1/2+1/3+1/4+...+2021)
A= 1/2+1/3+1/4+...+2021
Mik sẽ ko tính giúp bạn hết toàn bộ để bạn có thể tự làm được!
`1/2 xx 1/3 xx 1/4`
`= (1xx1xx1)/(2xx3xx4)`
`= 1/24`
__
`1/2 xx 1/3 : 1/4`
`= 1/2 xx 1/3 xx 4`
`= (1xx1xx4)/(2xx3)`
`= 4/6`
`=2/3`
__
`1/2 : 1/3 xx1/4`
`= 1/2 xx 3 xx 1/4`
`=(1xx3xx1)/(2xx4)`
`= 3/8`
__
`1/2 : 1/3 : 1/4`
`= 1/2 xx 3xx4`
`= 12/2`
`=6`
`1/2xx1/3xx1/4`
`=1/24`
`1/2xx1/3:1/4`
`=1/6xx4`
`=4/6=2/3`
`1/2:1/3xx1/4`
`=1/2xx3xx1/4`
`=3/2xx1/4`
`=3/8`
`1/2:1/3:1/4`
`=1/2xx3xx4`
`=6`
a) \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}\)
\(=1-\frac{1}{4}\)
\(=\frac{3}{4}\)
b) \(\frac{4}{7}\times\frac{8}{9}+\frac{4}{7}\times\frac{1}{9}\)
\(=\frac{4}{7}\times\left(\frac{8}{9}+\frac{1}{9}\right)\)
\(=\frac{4}{7}\times1\)
\(=\frac{4}{7}\)
c) \(\frac{13}{6}\times\frac{3}{8}-\frac{3}{8}\times\frac{7}{6}\)
\(=\frac{3}{8}\times\left(\frac{13}{6}-\frac{7}{6}\right)\)
\(=\frac{3}{8}\times1\)
\(=\frac{3}{8}\)
d) \(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{9x10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
a) 12/15 rút gọn cho 3 bằng 4/5
b) 20/15 rút gọn cho 5 bằng 4/3
c)36/24 rút gon cho 6 bằng 6/4 lại rút gọn tiếp cho 2 bằng 3/2
d) 2/4 rút gọn cho 2 bằng 1/ 2
e) 6/8 rút gọn cho 2 bằng 3/4
g) 4/10 rút gọn cho 2 bằng 2/ 5 .
Đáp án là như vậy k cho mình nha !!!
\(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{99}\right)\cdot\left(1-\frac{1}{100}\right)\)
\(=\frac{1}{2^{\left(1\right)}}\cdot\frac{2^{\left(1\right)}}{3^{\left(1\right)}}\cdot\frac{3^{\left(1\right)}}{4^{\left(1\right)}}\cdot...\cdot\frac{98^{\left(1\right)}}{99^{\left(1\right)}}\cdot\frac{99^{\left(1\right)}}{100}\)
\(=\frac{1}{100}\)
\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+50}\)
\(=\frac{1}{\frac{2.\left(2+1\right)}{2}}+\frac{1}{\frac{3.\left(3+1\right)}{2}}+\frac{1}{\frac{4\left(4+1\right)}{2}}+...+\frac{1}{\frac{50\left(50+1\right)}{2}}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+....+\frac{2}{50.51}\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{50}-\frac{1}{51}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{51}\right)\)
\(=\frac{49}{51}\)
ĐÚNG RỒI