Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2015+2013+2011+...+5+3+1}{2015-2013+2011-2009+...+7-5+3-1}\)
Ta có : 2015 + 2013 + 2011 + ... + 5 + 3 + 1
= [(2015 - 1) : 2 + 1].(2015 + 1) : 2
= 1008.2016 : 2 = 1016064
Lại có : 2015 - 2013 + 2011 - 2009 + ... + 7 - 5 + 3 - 1 (1008 số hạng
= (2015 - 2013) + (2011 - 2009) + ... + (7 - 5) + (3 - 1) (504 cặp)
= 2 + 2 + ... + 2 + 2 (504 số hạng 2)
= 2 x 504 = 1008
Khi đó A = \(\frac{1016064}{1008}=1008\)
b) tTa có : B = \(\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{5.95}+...+\frac{1}{97.3}+\frac{1}{99.1}}\)
=> \(\frac{B}{100}\) = \(\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{\frac{100}{1.99}+\frac{100}{3.97}+\frac{100}{5.95}+...+\frac{100}{97.3}+\frac{100}{99.1}}\)
\(=\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{1+\frac{1}{99}+\frac{1}{3}+\frac{1}{97}+\frac{1}{5}+\frac{1}{95}+..+\frac{1}{97}+\frac{1}{3}+\frac{1}{99}+1}=\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{2\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\right)}=\frac{1}{2}\)
Khi đó : B/100 = 1/2
=> B = 50
Vậy B = 50
giúp mình câu trên với mẫu là \(\dfrac{1}{1.2015}+\dfrac{1}{3.2013}+\dfrac{1}{5.2011}+...+\dfrac{1}{2013.3}+\dfrac{1}{2015.1}\)
S=1-3+5-7+...-2015+2017
= (1-3)+(5-7)+......+(2013-2015)+2017
Số số hạng có từ 1 dến 2015 là: (2015-1):2+1=1008(số)
Vậy: Có 504 cặp số
Tổng= (-2).504+2017=1009
S = 1 - 3 + 5 - 7 + ... + 2009 - 2011 + 2013 - 2015 + 2017
SSH của S = ( 2017 - 1) : 2 + 1 = 1009 (Số hạng)
=> S = 1 - 3 + 5 - 7 + ... + 2009 - 2011 + 2013 - 2015 + 2017 (1009 số hạng)
= (1 - 3) + (5 - 7) + ... + (2009 - 2011) + (2013 - 2015) + 2017 (505 số hạng)
= (-2) + (-2) + ... + (-2) + (-2) + 2017 (505 số hạng)
=> (-2) . 504 + 2017
= (-1008) + 2017 = 1009
Vậy S = 1009
\(\frac{\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}}{\frac{5}{2012}+\frac{5}{2013}-\frac{5}{2014}}-\frac{\frac{2}{2013}+\frac{2}{2014}-\frac{2}{2015}}{\frac{3}{2013}+\frac{3}{2014}-\frac{3}{2015}}\)
=\(\frac{\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}}{5\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}\right)}-\frac{2\left(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}\right)}{3\left(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}\right)}=\frac{1}{5}-\frac{2}{3}=\frac{3}{15}-\frac{10}{15}=-\frac{7}{15}\)