
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



a)\(2-3+5-7+9-11+13-15+17=\left(2+5+9+13+17\right)-\left(3+7+11+15\right)\)
\(=46-36=10\)
b)\(\frac{1}{1.2}+\frac{1}{2.3}+...............+\frac{1}{8.9}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.................+\frac{1}{8}-\frac{1}{9}\)
\(=\frac{1}{1}-\frac{1}{9}=\frac{9}{9}-\frac{1}{9}=\frac{8}{9}\)
Áp dụng \(\frac{1}{n.\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
Chúc bạn học tốt
Đề là tính bằng cách hợp lý đúng ko bạn
a, 2-3+5-7+9-11+13-15+17
= (5+13) - (3+15) + (2+9-11) + (17-7)
= 18 - 18 + 0 +10
= 10
b, \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
\(=1-\frac{1}{9}\)
\(=\frac{8}{9}\)

\(1+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}\)
\(=\dfrac{5}{4}+\dfrac{1}{8}+\dfrac{1}{16}\)
\(=\dfrac{11}{8}+\dfrac{1}{16}\)
\(=\dfrac{23}{16}\)
______
\(2-\dfrac{1}{8}-\dfrac{1}{12}-\dfrac{1}{16}\)
\(=\dfrac{15}{8}-\dfrac{1}{12}-\dfrac{1}{16}\)
\(=\dfrac{43}{24}-\dfrac{1}{16}\)
\(=\dfrac{83}{48}\)
_________
\(\dfrac{4}{99}\times\dfrac{18}{5}:\dfrac{12}{11}+\dfrac{3}{5}\)
\(=\dfrac{8}{55}:\dfrac{12}{11}+\dfrac{3}{5}\)
\(=\dfrac{8}{55}\times\dfrac{11}{12}+\dfrac{3}{5}\)
\(=\dfrac{2}{15}+\dfrac{3}{5}\)
\(=\dfrac{11}{15}\)
__________
\(\left(1-\dfrac{3}{4}\right)\times\left(1+\dfrac{1}{3}\right)\times\left(1-\dfrac{1}{3}\right)\)
\(=\dfrac{1}{4}\times\dfrac{4}{3}\times\dfrac{2}{3}\)
\(=\dfrac{4\times2}{4\times3\times3}\)
\(=\dfrac{2}{3\times3}\)
\(=\dfrac{2}{9}\)

1/1*2+1/2*3+1/3*4+......+1/99*100+1/100*101
= 1 - 1/2 + 1/2 - 1/3 + ... + 1/99 - 100 + 1/00 - 1/101
= 1 - 1/101
= 100/101
3/5*8+3/8*11+3/11*14+.........3/605*608+3/608*611
= 1/5 - 1/8 + 1/8 - 1/11 + 1/11 - ... + 1/608 - 1/611
= 1/5 - 1/611
= 606/3055

\(B=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+...+\frac{1}{8.9.10.11}+\frac{1}{9.10.11.12}\)
\(B=\frac{1}{3}\left(\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+\frac{3}{3.4.5.6}+...+\frac{3}{8.9.10.11}+\frac{3}{9.10.11.12}\right)\)
\(B=\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{9.10.11}-\frac{1}{10.11.12}\right)\)
\(B=\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{10.11.12}\right)\)
\(B=\frac{1}{3}.\frac{73}{440}=\frac{43}{1320}\)