Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{10^{2n}-1}{9}+\frac{10^n-1}{9}+6.\frac{10^n-1}{9}+8\)
\(B=\frac{10^{2n}}{9}-\frac{1}{9}+\frac{10^n}{9}-\frac{1}{9}+\frac{6.10^n}{9}-\frac{6}{9}+8\)
\(B=\left(\frac{10^n}{3}\right)^2+2.\frac{10^n}{3}.\frac{8}{3}+\left(\frac{8}{3}\right)^2-10^n=\left(\frac{10^n}{3}+\frac{8}{3}\right)^2-10^n\)
Bg
Ta có: \(M=\frac{-2020}{55555^{66666}}\)và \(N=\frac{2020}{-66666^{55555}.11111^{11111}}\)
Xét \(M=\frac{-2020}{55555^{66666}}\):
=> \(M=\frac{-2020}{\left(11111.5\right)^{11111.6}}\)
=> \(M=\frac{-2020}{11111^{11111.6}.5^{11111.6}}\)
=> \(M=\frac{-2020}{11111^{11111.6}.5^{6^{11111}}}\)
=> \(M=\frac{-2020}{11111^{11111.6}.15625^{11111}}\)
Xét \(N=\frac{2020}{-66666^{55555}.11111^{11111}}\):
=> \(N=\frac{-2020}{\left(11111.6\right)^{11111.5}.11111^{11111}}\)
=> \(N=\frac{-2020}{11111^{11111.5}.6^{11111.5}.11111^{11111}}\)
=> \(N=\frac{-2020}{11111^{11111.5}.11111^{11111}.6^{11111.5}}\)
=> \(N=\frac{-2020}{11111^{11111.5+}^{11111}.6^{11111.5}}\)
=> \(N=\frac{-2020}{11111^{11111.6}.6^{11111.5}}\)
=> \(N=\frac{-2020}{11111^{11111.6}.7776^{11111}}\)
Vì 777611111 < 1562511111 nên \(M=\frac{-2020}{11111^{11111.6}.15625^{11111}}\)> \(N=\frac{-2020}{11111^{11111.6}.7776^{11111}}\)
Vậy M > N
Đặt 111....1<n chữ số 1> là k
Ta có: 111......1<2n chữ số 1>=k.10n + k
Vì :10n = 9k + 1
11......1<2n chữ số 1>= k.<9k + 1> +k = 9k2+k+k = 9k2 + 2k
Ta có 444........4<n chữ số 4>=4k
Vậy a+b+1= 9k2 +2k+4k+1 = <3k>2 +2.3k.1 +12 = <3k +1>2
Vậy a+b+1 là một số chính phương
\(a+b=1111....11\left(\text{2n chữ số 1}\right)+44.....444\left(\text{n chữ số 4}\right)=111...111\left(\text{n chữ số 1}\right).\left(1000...05\left(\text{n-1 chữ số 0}\right)\right)=333.....33\left(\text{n chữ số 3}\right).3333....35\left(\text{n-1 chữ số 3}\right)=\left(333..334\left(\text{n-1 chữ số 3}\right)\right)^2-1\Rightarrow a+b+1=333...334^2\text{ là số chính phương đpcm}\)
1/2000*1999 - 1/1999*1998 - 1/1998*1997 - ... - 1/2*1
= 1/1999 - 1/2000 - (1/1998 - 1/1999) - (1/1997 - 1/1998) - ... - (1 - 1/2)
= 1/1999 - 1/2000 - 1/1998 + 1/1999 - 1/1997 +1/1998 - .... - 1 + 1/2
= 1/1999 + 1/1999 - 1/2000 - 1/1998 + 1/1998 - 1/1997 +1/1997 - .... - 1/2 +1/2 - 1
= 1/1999 + 1/1999 - 1/2000 - 1
= 2/1999 - 1 - 1/2000
= -1997/1999 - 1/2000
= -2000 - 1997/1997*2000
=-3997/3994000
=
=22224000