Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}\right)\cdot X=\frac{11}{6}\)
\(< =>\left(\frac{1}{2}-\frac{1}{12}-\frac{1}{60}\right)\cdot X=\frac{11}{6}\)
\(< =>\left(\frac{30}{60}-\frac{5}{60}-\frac{1}{60}\right)\cdot X=\frac{11}{6}\)
\(< =>\left(\frac{30-5-1}{60}\right)\cdot X=\frac{11}{6}\)
\(< =>\frac{2}{5}\cdot X=\frac{11}{6}\)
\(< =>X=\frac{11}{6}:\frac{2}{5}\)
\(< =>X=\frac{55}{12}\)
CHUC BAN HOC TOT >.<
Ta có : \(\frac{1}{4}+\frac{1}{3}:\frac{1}{x}=\frac{11}{12}\)
\(\Rightarrow\frac{1}{3}:\frac{1}{x}=\frac{11}{12}-\frac{1}{4}\)
\(\frac{1}{3}:\frac{1}{x}=\frac{2}{3}\)
\(\frac{1}{x}=\frac{1}{3}:\frac{2}{3}\)
\(\frac{1}{x}=\frac{1}{3}\times\frac{3}{2}\)
\(\frac{1}{x}=\frac{1}{2}\)
=> x = 2
a) \(\frac{x\div3-16}{2}+21=38\)
\(\frac{x\div3-16}{2}=38+21\)
\(\frac{x\div3-16}{2}=59\)
\(x\div3-16=59.2\)
\(x\div3-16=118\)
\(x\div3=118+16\)
\(x\div3=134\)
\(x=134.3\)
\(x=402\)
b) \(\frac{1}{4}+\frac{1}{3}\div\frac{1}{x}=\frac{11}{12}\)
\(\frac{1}{3}\div\frac{1}{x}=\frac{11}{12}-\frac{1}{4}\)
\(\frac{1}{3}\div\frac{1}{x}=\frac{2}{3}\)
\(\frac{1}{x}=\frac{1}{3}\div\frac{2}{3}\)
\(\frac{1}{x}=\frac{1}{2}\)
Vậy x = ....
a, (x+2)+(x+4)+(x+6)+...+(x+100)=6000
(x+x+x+...+x)+(2+4+6+...+100)=6000
50.x+2550=6000
50.x=6000-2550
50.x=3450
x=3450:50
x=69
b, 1+2+3+4+...+x=15
10+...+x=15
x=15-10
x=5
Nho **** cho minh nha
Ta có: (x+x+x+...+x) + (2+4+6+...+100) = 6000
Ta thấy vế phải có: (100-2):2+1=50(số hạng)
Tổng của vế phải: [(2+100)*50]:2=2550
\(\Rightarrow\)có 50 số x
\(\Rightarrow\)50*x + 2550 = 6000
\(\Rightarrow\)50*x=6000-2550
\(\Rightarrow\)50*x=3450
\(\Rightarrow\)x=3450:50
\(\Rightarrow\)x=69
Vậy x=69
Mình đúng nè, nhớ k nha
+) Nghĩ đến việc thêm tổng 1+2 + ..+9 để tổng trở thành tổng 1+2+ 3+ ..+ x
Tổng sau xác định được số các số hạng trong dãy đơn giản hơn so với tổng đầu
+) bài 10 + 11 + ...+ x = 5106 hoàn toàn làm tương tự: cộng thêm tổng 1 + 2 + ...+ 9 vào cả 2 vế
Ta có:
\(A=\left(x-\frac{1}{2}\right).\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)=\frac{1}{3}\)
\(\Leftrightarrow A=\left(x-\frac{1}{2}\right).\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)=\frac{1}{3}\)
\(\Leftrightarrow A=\left(x-\frac{1}{2}\right).\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)=\frac{1}{3}\)
\(\Leftrightarrow A=\left(x-\frac{1}{2}\right).\left(\frac{1}{1}-\frac{1}{10}\right)=\frac{1}{3}\)
\(\Leftrightarrow A=\left(x-\frac{1}{2}\right).\frac{9}{10}=\frac{1}{3}\Leftrightarrow x-\frac{1}{2}=\frac{1}{3}.\frac{10}{9}\Leftrightarrow x=\frac{47}{54}\)
\(B=\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{96.101}=\frac{1}{10.x}\)
\(\Leftrightarrow B=\frac{1}{5}.\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{96.101}\right)=\frac{1}{10}-\frac{1}{x}\)
\(\Leftrightarrow B=\frac{1}{5}.\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{96}-\frac{1}{101}\right)=\frac{1}{10}-\frac{1}{x}\)
\(\Leftrightarrow B=\frac{1}{5}.\left(\frac{1}{1}-\frac{1}{101}\right)=\frac{1}{10}-\frac{1}{x}\Leftrightarrow B=\frac{1}{5}.\frac{100}{101}=\frac{1}{10}-\frac{1}{x}\)
\(\Leftrightarrow B=\frac{1}{x}=\frac{1}{10}-\frac{20}{101}=-\frac{99}{1010}\Leftrightarrow x=-\frac{1010}{99}\)
c) Sai đề nhé bạn vì không có kết quả nên không tìm được x.
d) \(\left(x-5\right).\left(10-9\frac{40}{41}\right):\left(1-\frac{81}{82}\right):\left(1-\frac{204}{205}\right)=2050\)
\(\Rightarrow\left(x-5\right).\frac{1}{41}.82.205=2050\)
\(\Rightarrow\left(x-5\right).2.205=2050\Leftrightarrow x-5=2050:410=5\Leftrightarrow x=10\)
\(\left(1+\dfrac{1}{10}\right)\times\left(1+\dfrac{1}{11}\right)\times...\times\left(1+\dfrac{1}{20}\right)\\ =\dfrac{10+1}{10}\times\dfrac{11+1}{11}\times...\times\dfrac{20+1}{20}\\ =\dfrac{11}{10}\times\dfrac{12}{11}\times\dfrac{13}{12}\times...\times\dfrac{21}{20}\\ =\dfrac{21}{10}\)