Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)
=> \(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\) (dấu . có nghĩa là nhân)
=> \(3A=3\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\right)\)
\(=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\)
\(=\frac{1}{2}-\frac{1}{20}\)
\(=\frac{9}{20}\)
Đây là kiến thức lớp 6 nhá =)) bạn mà có chỗ nào ko hiểu thì hỏi ng thầy cô giạy bạn ý
\(S=\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{184}+\frac{1}{238}+\frac{1}{340}=\frac{1}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}\right)\)
\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\right)\)
\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{20}\right)=\frac{1}{3}.\frac{9}{20}=\frac{3}{20}>\frac{2}{20}=\frac{1}{10}=0,1\)
vậy S>0,1
S = \(\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)
S = \(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\)
S = \(\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+....+\frac{1}{17}-\frac{1}{20}\right)\)
S = \(\frac{1}{3}\left(\frac{1}{2}-\frac{1}{20}\right)=\frac{1}{3}.\frac{9}{20}\)
S = \(\frac{3}{20}\)
S = 0,15 > 0,1
Ta có:\(\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+....+\frac{1}{340}=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{17.20}\)
= \(\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+.....+\frac{1}{17}-\frac{1}{20}\right)=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{20}\right)=\frac{1}{3}.\frac{9}{20}=\frac{3}{20}\)
Ta có: S = 1/10 + 1/40 + 1/88 + 1/154 + 1/238 + 1/340
=> S = 1/2.5 + 1/5.8 + 1/8.11 + 1/11.14 +1/14.17 +1/17.20
Nhân 2 vế với 3 và áp dụng công thức tách 1 phân số thành hiệu 2 phân số: x/n.(n + x) = 1/n - 1/(n + x)
=> 3.S = 3.(1/2.5 + 1/5.8 + 1/8.11 +1/11.14 +1/14.17 +1/17.20)
=> 3.S = 3/2.5 + 3/5.8 + 3/8.11 + 3/11.14 +3/14.17 +3/17.20
=> 3.S = 1/2 - 1/ 5 + 1/5 - 1/8 + 1/8 - 1/11 + 1/11 - 1/14 + 1/14 - 1/17 + 1/17 -1/20
=> 3.S = 1/2 - 1/20
=> 3.S = 9/20
=> S = 3/20
a)1/2 + 5/6 + 11/12 + 19/20 + 29/30 + 41/42 + 55/56 + 71/72+89/90
=1-1/2+1-1/6+1-1/12+1-1/20+1-1/30+1-1/42+1-1/56+1-1/72+1-1/90
=9 – (1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90)
=9 – [1/(1x2)+1/(2x3)+1/(3x4)+1/(4x5)+1/(5x6)+1/(6x7)+1/(7x8)+1/(8x9)+1/(9x10)]
=9 – ( 1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10)
=9 – (1 – 1/10) = 9 – 9/10 = 81/10
b)4/3.7 + 4/7.11 + 4/11.15 + 4/15.19 + 4/19.23 + 4/23.27
=4.(4/3.7 + 4/7.11 + ........+ 4/23.27 )
=1.( 1/3.7 + 1/7.11 + ......+ 1/23.27 )
=1.(1/3 - 1/7 + 1/7 - 1/11 +............ + 1/23 - 1/27 )
=1.(1/3 - 1/27 )
=1.(9/27 - 1/27)
=1.8/27
=8/27
c)1/10+1/40+1/88+1/154+1/138+1/340
=1/2.5 + 1/5.8 + 1/11.8 + 1/11.14 + 1/14.17 + 1/17.20
=1/3. (3/2.5 + 3/5.8 + 3/8.11 + 3/11.14 + 3/14.17 + 3/17.20 )
=1/3. ( 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + 1/11 - 1/14 + 1/14 - 1/17 + 1/17 -1/20 )
=1/3. ( 1/2 - 1/20 )
=1/3. 9/20
=3/20
P/S: CHÚC HOK TỐT !
Ta có : \(\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)
\(=\frac{1}{2\times5}+\frac{1}{5\times8}+\frac{1}{8\times11}+\frac{1}{11\times14}+\frac{1}{14\times17}+\frac{1}{17\times20}\)
\(=\frac{1}{3}\times\left(\frac{3}{2\times5}+\frac{3}{5\times8}+\frac{3}{8\times11}+\frac{3}{11\times14}+\frac{3}{14\times17}+\frac{3}{17\times20}\right)\)
\(=\frac{1}{3}\times\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\right)\)
\(=\frac{1}{3}\times\left(\frac{1}{2}-\frac{1}{20}\right)\)
\(=\frac{1}{3}\times\frac{9}{20}\)
\(=\frac{3}{20}\)