Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt $\frac{x+y}{x-y}=a; \frac{y+z}{y-z}=b; \frac{z+x}{z-x}=c$
Bằng phép biến đổi tương đương cơ bản, ta chỉ ra được:
$ab+bc+ac=-1$
$\Leftrightarrow (a+b+c)^2-(a^2+b^2+c^2)=-2$
$\Leftrightarrow a^2+b^2+c^2=(a+b+c)^2+2\geq 2$
Ta sẽ đi chứng minh $a^{2020}+b^{2020}+c^{2020}>\frac{2^{1010}{3^{1009}}$
-------------------------------------------
Áp dụng BĐT AM-GM cho các số không âm:
\(\frac{a^{2020}}{a^{2020}+b^{2020}+c^{2020}}+\frac{1}{3}+\frac{1}{3}+....+\frac{1}{3}\geq 1010\sqrt[1010]{\frac{a^{2020}}{(a^{2020}+b^{2020}+c^{2020}).3^{1009}}}\)
\(\frac{b^{2020}}{a^{2020}+b^{2020}+c^{2020}}+\frac{1}{3}+\frac{1}{3}+....+\frac{1}{3}\geq 1010\sqrt[1010]{\frac{b^{2020}}{(a^{2020}+b^{2020}+c^{2020}).3^{1009}}}\)
\(\frac{c^{2020}}{a^{2020}+b^{2020}+c^{2020}}+\frac{1}{3}+\frac{1}{3}+....+\frac{1}{3}\geq 1010\sqrt[1010]{\frac{c^{2020}}{(a^{2020}+b^{2020}+c^{2020}).3^{1009}}}\)
Cộng theo vế và thu gọn: $a^2+b^2+c^2\leq \sqrt[1010]{(a^{2020}+b^{2020}+c^{2020}).3^{1009}}$
$\Rightarrow a^{2020}+b^{2020}+c^{2020}\geq \frac{(a^2+b^2+c^2)^{1010}}{3^{1009}}\geq \frac{2^{1010}}{3^{1009}}$ do $a^2+b^2+c^2\geq 2$
Dấu "=" xảy ra khi $a=b=c$ và $a^2+b^2+c^2=2$. Điều này không được vì $x,y,z$ đôi một khác nhau làm $a,b,c$ đôi một khác nhau
Ta có đpcm.
Đề bài đúng k z?@@
Hình như là \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2016\)thì phải?
Ta có: \(\frac{sinx+cotx}{1+tanx.sinx}=\frac{sinx.cosx\left(sinx+cotx\right)}{sinx.cosx\left(1+tanx.sinx\right)}=\frac{cosx\left(sin^2x+cosx\right)}{sinx\left(cosx+sin^2x\right)}=cotx\)
\(\Rightarrow\frac{\left(sinx+cotx\right)^{2016}}{\left(1+tanx.sinx\right)^{2016}}=cot^{2016}x\) (1)
\(\frac{sin^{2016}x+cot^{2016}x}{1+tan^{2016}x.sin^{2016}x}=\frac{sin^{2016}x.cos^{2016}x\left(sin^{2016}x+cot^{2016}x\right)}{sin^{2016}x.cos^{2016}x\left(1+tan^{2016}x.sin^{2016}x\right)}\)
\(=\frac{cos^{2016}x\left(sin^{4032}x+cos^{2016}x\right)}{sin^{2016}x\left(cos^{2016}x+sin^{4032}x\right)}=cot^{2016}x\) (2)
(1);(2) suy ra đpcm
\(\Rightarrow A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2015}{2016}=\frac{1}{2016}\)
Gọi ba số lần lượt là a,b,c
Theo đề, ta có \(\left\{{}\begin{matrix}\dfrac{a}{2}=\dfrac{b}{3}\\\dfrac{a}{4}=\dfrac{c}{9}\end{matrix}\right.\Leftrightarrow\dfrac{a}{4}=\dfrac{b}{6}=\dfrac{c}{9}\)
Đặt a/4=b/6=c/9=k
=>a=4k; b=6k c=9k
Ta có: \(a^3+b^3+c^3=-1009\)
\(\Leftrightarrow64k^3+216k^3+729k^3=-1009\)
=>k=-1
=>a=-4; b=-6; c=-9
Chỉ so sánh được thôi k tính được bạn ak
Theo mình thì đề bài đầy đủ là như thế này :
So sánh \(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{2015\cdot2016}\)với \(\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\).
Giải :
Ta có : \(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{2015\cdot2016}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2015}-\frac{1}{2016}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2015}+\frac{1}{2016}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\cdot2\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1008}\right)\)
\(=\frac{1}{1009}+\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2016}< \frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\)
Chúc bạn học tốt!